945 resultados para Homeotropic alignment
Resumo:
The nature of the subducted lithospheric slab is investigated seismologically by tomographic inversions of ISC residual travel times. The slab, in which nearly all deep earthquakes occur, is fast in the seismic images because it is much cooler than the ambient mantle. High resolution three-dimensional P and S wave models in the NW Pacific are obtained using regional data, while inversion for the SW Pacific slabs includes teleseismic arrivals. Resolution and noise estimations show the models are generally well-resolved.
The slab anomalies in these models, as inferred from the seismicity, are generally coherent in the upper mantle and become contorted and decrease in amplitude with depth. Fast slabs are surrounded by slow regions shallower than 350 km depth. Slab fingering, including segmentation and spreading, is indicated near the bottom of the upper mantle. The fast anomalies associated with the Japan, Izu-Bonin, Mariana and Kermadec subduction zones tend to flatten to sub-horizontal at depth, while downward spreading may occur under parts of the Mariana and Kuril arcs. The Tonga slab appears to end around 550 km depth, but is underlain by a fast band at 750-1000 km depths.
The NW Pacific model combined with the Clayton-Comer mantle model predicts many observed residual sphere patterns. The predictions indicate that the near-source anomalies affect the residual spheres less than the teleseismic contributions. The teleseismic contributions may be removed either by using a mantle model, or using teleseismic station averages of residuals from only regional events. The slab-like fast bands in the corrected residual spheres are are consistent with seismicity trends under the Mariana Tzu-Bonin and Japan trenches, but are inconsistent for the Kuril events.
The comparison of the tomographic models with earthquake focal mechanisms shows that deep compression axes and fast velocity slab anomalies are in consistent alignment, even when the slab is contorted or flattened. Abnormal stress patterns are seen at major junctions of the arcs. The depth boundary between tension and compression in the central parts of these arcs appears to depend on the dip and topology of the slab.
Resumo:
Photoelectron angular distributions (PADs) from above-threshold ionization of O-2 and N-2 molecules irradiated by a bichromatic laser field of circular polarization are Studied. The bichromatic laser field is specially modulated such that it can be used to mimic a sequence of one-cycle laser pulses. The PADs are greatly affected by the molecular alignment, the symmetry of the initial electronic distribution, and the carrier-envelope phase of the laser pulses. Generally, the PADs do not show any symmetry, and become symmetric about an axis only when the symmetric axis of laser field coincides with the symmetric axis of molecules. This study shows that the few-cycle laser pulses call be used to steer the photoelectrons and perform the selective ionization of molecules. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A comprehensive study was made of the flocculation of dispersed E. coli bacterial cells by the cationic polymer polyethyleneimine (PEI). The three objectives of this study were to determine the primary mechanism involved in the flocculation of a colloid with an oppositely charged polymer, to determine quantitative correlations between four commonly-used measurements of the extent of flocculation, and to record the effect of varying selected system parameters on the degree of flocculation. The quantitative relationships derived for the four measurements of the extent of flocculation should be of direct assistance to the sanitary engineer in evaluating the effectiveness of specific coagulation processes.
A review of prior statistical mechanical treatments of absorbed polymer configuration revealed that at low degrees of surface site coverage, an oppositely- charged polymer molecule is strongly adsorbed to the colloidal surface, with only short loops or end sequences extending into the solution phase. Even for high molecular weight PEI species, these extensions from the surface are theorized to be less than 50 Å in length. Although the radii of gyration of the five PEI species investigated were found to be large enough to form interparticle bridges, the low surface site coverage at optimum flocculation doses indicates that the predominant mechanism of flocculation is adsorption coagulation.
The effectiveness of the high-molecular weight PEI species 1n producing rapid flocculation at small doses is attributed to the formation of a charge mosaic on the oppositely-charged E. coli surfaces. The large adsorbed PEI molecules not only neutralize the surface charge at the adsorption sites, but also cause charge reversal with excess cationic segments. The alignment of these positive surface patches with negative patches on approaching cells results in strong electrostatic attraction in addition to a reduction of the double-layer interaction energies. The comparative ineffectiveness of low-molecular weight PEI species in producing E. coli flocculation is caused by the size of the individual molecules, which is insufficient to both neutralize and reverse the negative E.coli surface charge. Consequently, coagulation produced by low molecular weight species is attributed solely to the reduction of double-layer interaction energies via adsorption.
Electrophoretic mobility experiments supported the above conclusions, since only the high-molecular weight species were able to reverse the mobility of the E. coli cells. In addition, electron microscope examination of the seam of agglutination between E. coli cells flocculation by PEI revealed tightly- bound cells, with intercellular separation distances of less than 100-200 Å in most instances. This intercellular separation is partially due to cell shrinkage in preparation of the electron micrographs.
The extent of flocculation was measured as a function of PEl molecular weight, PEl dose, and the intensity of reactor chamber mixing. Neither the intensity of mixing, within the common treatment practice limits, nor the time of mixing for up to four hours appeared to play any significant role in either the size or number of E.coli aggregates formed. The extent of flocculation was highly molecular weight dependent: the high-molecular-weight PEl species produce the larger aggregates, the greater turbidity reductions, and the higher filtration flow rates. The PEl dose required for optimum flocculation decreased as the species molecular weight increased. At large doses of high-molecular-weight species, redispersion of the macroflocs occurred, caused by excess adsorption of cationic molecules. The excess adsorption reversed the surface charge on the E.coli cells, as recorded by electrophoretic mobility measurements.
Successful quantitative comparisons were made between changes in suspension turbidity with flocculation and corresponding changes in aggregate size distribution. E. coli aggregates were treated as coalesced spheres, with Mie scattering coefficients determined for spheres in the anomalous diffraction regime. Good quantitative comparisons were also found to exist between the reduction in refiltration time and the reduction of the total colloid surface area caused by flocculation. As with turbidity measurements, a coalesced sphere model was used since the equivalent spherical volume is the only information available from the Coulter particle counter. However, the coalesced sphere model was not applicable to electrophoretic mobility measurements. The aggregates produced at each PEl dose moved at approximately the same vlocity, almost independently of particle size.
PEl was found to be an effective flocculant of E. coli cells at weight ratios of 1 mg PEl: 100 mg E. coli. While PEl itself is toxic to E.coli at these levels, similar cationic polymers could be effectively applied to water and wastewater treatment facilities to enhance sedimentation and filtration characteristics.
Resumo:
This work proposes a new simulation methodology in which variable density turbulent flows can be studied in the context of a mixing layer with or without the presence of gravity. Specifically, this methodology is developed to probe the nature of non-buoyantly-driven (i.e. isotropically-driven) or buoyantly-driven mixing deep inside a mixing layer. Numerical forcing methods are incorporated into both the velocity and scalar fields, which extends the length of time over which mixing physics can be studied. The simulation framework is designed to allow for independent variation of four non-dimensional parameters, including the Reynolds, Richardson, Atwood, and Schmidt numbers. Additionally, the governing equations are integrated in such a way to allow for the relative magnitude of buoyant energy production and non-buoyant energy production to be varied.
The computational requirements needed to implement the proposed configuration are presented. They are justified in terms of grid resolution, order of accuracy, and transport scheme. Canonical features of turbulent buoyant flows are reproduced as validation of the proposed methodology. These features include the recovery of isotropic Kolmogorov scales under buoyant and non-buoyant conditions, the recovery of anisotropic one-dimensional energy spectra under buoyant conditions, and the preservation of known statistical distributions in the scalar field, as found in other DNS studies.
This simulation methodology is used to perform a parametric study of turbulent buoyant flows to discern the effects of varying the Reynolds, Richardson, and Atwood numbers on the resulting state of mixing. The effects of the Reynolds and Atwood numbers are isolated by looking at two energy dissipation rate conditions under non-buoyant (variable density) and constant density conditions. The effects of Richardson number are isolated by varying the ratio of buoyant energy production to total energy production from zero (non-buoyant) to one (entirely buoyant) under constant Atwood number, Schmidt number, and energy dissipation rate conditions. It is found that the major differences between non-buoyant and buoyant turbulent flows are contained in the transfer spectrum and longitudinal structure functions, while all other metrics are largely similar (e.g. energy spectra, alignment characteristics of the strain-rate tensor). Also, despite the differences noted between fully buoyant and non-buoyant turbulent fields, the scalar field, in all cases, is unchanged by these. The mixing dynamics in the scalar field are found to be insensitive to the source of turbulent kinetic energy production (non-buoyant vs. buoyant).
Resumo:
激光诱导周期性纳米微结构在多种材料包括电介质、半导体、金属和聚合物中观察到。研究了800 nm和400 nm飞秒激光垂直聚焦于6H SiC晶体表面制备纳米微结构。实验观察到800 nm和400 nm线偏光照射样品表面分别得到周期为150 nm和80 nm的干涉条纹, 800 nm圆偏振激光单独照射样品表面得到粒径约100 nm的纳米颗粒。偏振相互垂直的800 nm和400 nm激光同时照射晶体得到粒径约100 nm的纳米颗粒阵列, 该纳米阵列的方向随400 nm激光强度增加而向400 nm偏振方向偏转。利
Resumo:
Semiconductor technology scaling has enabled drastic growth in the computational capacity of integrated circuits (ICs). This constant growth drives an increasing demand for high bandwidth communication between ICs. Electrical channel bandwidth has not been able to keep up with this demand, making I/O link design more challenging. Interconnects which employ optical channels have negligible frequency dependent loss and provide a potential solution to this I/O bandwidth problem. Apart from the type of channel, efficient high-speed communication also relies on generation and distribution of multi-phase, high-speed, and high-quality clock signals. In the multi-gigahertz frequency range, conventional clocking techniques have encountered several design challenges in terms of power consumption, skew and jitter. Injection-locking is a promising technique to address these design challenges for gigahertz clocking. However, its small locking range has been a major contributor in preventing its ubiquitous acceptance.
In the first part of this dissertation we describe a wideband injection locking scheme in an LC oscillator. Phase locked loop (PLL) and injection locking elements are combined symbiotically to achieve wide locking range while retaining the simplicity of the latter. This method does not require a phase frequency detector or a loop filter to achieve phase lock. A mathematical analysis of the system is presented and the expression for new locking range is derived. A locking range of 13.4 GHz–17.2 GHz (25%) and an average jitter tracking bandwidth of up to 400 MHz are measured in a high-Q LC oscillator. This architecture is used to generate quadrature phases from a single clock without any frequency division. It also provides high frequency jitter filtering while retaining the low frequency correlated jitter essential for forwarded clock receivers.
To improve the locking range of an injection locked ring oscillator; QLL (Quadrature locked loop) is introduced. The inherent dynamics of injection locked quadrature ring oscillator are used to improve its locking range from 5% (7-7.4GHz) to 90% (4-11GHz). The QLL is used to generate accurate clock phases for a four channel optical receiver using a forwarded clock at quarter-rate. The QLL drives an injection locked oscillator (ILO) at each channel without any repeaters for local quadrature clock generation. Each local ILO has deskew capability for phase alignment. The optical-receiver uses the inherent frequency to voltage conversion provided by the QLL to dynamically body bias its devices. A wide locking range of the QLL helps to achieve a reliable data-rate of 16-32Gb/s and adaptive body biasing aids in maintaining an ultra-low power consumption of 153pJ/bit.
From the optical receiver we move on to discussing a non-linear equalization technique for a vertical-cavity surface-emitting laser (VCSEL) based optical transmitter, to enable low-power, high-speed optical transmission. A non-linear time domain optical model of the VCSEL is built and evaluated for accuracy. The modelling shows that, while conventional FIR-based pre-emphasis works well for LTI electrical channels, it is not optimum for the non-linear optical frequency response of the VCSEL. Based on the simulations of the model an optimum equalization methodology is derived. The equalization technique is used to achieve a data-rate of 20Gb/s with power efficiency of 0.77pJ/bit.
Resumo:
G-protein coupled receptors (GPCRs) form a large family of proteins and are very important drug targets. They are membrane proteins, which makes computational prediction of their structure challenging. Homology modeling is further complicated by low sequence similarly of the GPCR superfamily.
In this dissertation, we analyze the conserved inter-helical contacts of recently solved crystal structures, and we develop a unified sequence-structural alignment of the GPCR superfamily. We use this method to align 817 human GPCRs, 399 of which are nonolfactory. This alignment can be used to generate high quality homology models for the 817 GPCRs.
To refine the provided GPCR homology models we developed the Trihelix sampling method. We use a multi-scale approach to simplify the problem by treating the transmembrane helices as rigid bodies. In contrast to Monte Carlo structure prediction methods, the Trihelix method does a complete local sampling using discretized coordinates for the transmembrane helices. We validate the method on existing structures and apply it to predict the structure of the lactate receptor, HCAR1. For this receptor, we also build extracellular loops by taking into account constraints from three disulfide bonds. Docking of lactate and 3,5-dihydroxybenzoic acid shows likely involvement of three Arg residues on different transmembrane helices in binding a single ligand molecule.
Protein structure prediction relies on accurate force fields. We next present an effort to improve the quality of charge assignment for large atomic models. In particular, we introduce the formalism of the polarizable charge equilibration scheme (PQEQ) and we describe its implementation in the molecular simulation package Lammps. PQEQ allows fast on the fly charge assignment even for reactive force fields.
Resumo:
The need for sustainable energy production motivates the study of photovoltaic materials, which convert energy from sunlight directly into electricity. This work has focused on the development of Cu2O as an earth-abundant solar absorber due to the abundance of its constituent elements in the earth's crust, its suitable band gap, and its potential for low cost processing. Crystalline wafers of Cu2O with minority carrier diffusion lengths on the order of microns can be manufactured in a uniquely simple fashion — directly from copper foils by thermal oxidation. Furthermore, Cu2O has an optical band gap of 1.9 eV, which gives it a detailed balance energy conversion efficiency of 24.7% and the possibility for an independently connected Si/Cu2O dual junction with a detailed balance efficiency of 44.3%.
However, the highest energy conversion efficiency achieved in a photovoltaic device with a Cu2O absorber layer is currently only 5.38% despite the favorable optical and electronic properties listed above. There are several challenges to making a Cu2O photovoltaic device, including an inability to dope the material, its relatively low chemical stability compared to other oxides, and a lack of suitable heterojunction partners due to an unusually small electron affinity. We have addressed the low chemical stability, namely the fact that Cu2O is an especially reactive oxide due to its low enthalpy of formation (ΔHf0 = -168.7 kJ/mol), by developing a novel surface preparation technique. We have addressed the lack of suitable heterojunction partners by investigating the heterojunction band alignment of several Zn-VI materials with Cu2O. Finally, We have addressed the typically high series resistance of Cu2O wafers by developing methods to make very thin, bulk Cu2O, including devices on Cu2O wafers as thin as 20 microns. Using these methods we have been able to achieve photovoltages over 1 V, and have demonstrated the potential of a new heterojunction material, Zn(O,S).
Resumo:
Quantum mechanics places limits on the minimum energy of a harmonic oscillator via the ever-present "zero-point" fluctuations of the quantum ground state. Through squeezing, however, it is possible to decrease the noise of a single motional quadrature below the zero-point level as long as noise is added to the orthogonal quadrature. While squeezing below the quantum noise level was achieved decades ago with light, quantum squeezing of the motion of a mechanical resonator is a more difficult prospect due to the large thermal occupations of megahertz-frequency mechanical devices even at typical dilution refrigerator temperatures of ~ 10 mK.
Kronwald, Marquardt, and Clerk (2013) propose a method of squeezing a single quadrature of mechanical motion below the level of its zero-point fluctuations, even when the mechanics starts out with a large thermal occupation. The scheme operates under the framework of cavity optomechanics, where an optical or microwave cavity is coupled to the mechanics in order to control and read out the mechanical state. In the proposal, two pump tones are applied to the cavity, each detuned from the cavity resonance by the mechanical frequency. The pump tones establish and couple the mechanics to a squeezed reservoir, producing arbitrarily-large, steady-state squeezing of the mechanical motion. In this dissertation, I describe two experiments related to the implementation of this proposal in an electromechanical system. I also expand on the theory presented in Kronwald et. al. to include the effects of squeezing in the presence of classical microwave noise, and without assumptions of perfect alignment of the pump frequencies.
In the first experiment, we produce a squeezed thermal state using the method of Kronwald et. al.. We perform back-action evading measurements of the mechanical squeezed state in order to probe the noise in both quadratures of the mechanics. Using this method, we detect single-quadrature fluctuations at the level of 1.09 +/- 0.06 times the quantum zero-point motion.
In the second experiment, we measure the spectral noise of the microwave cavity in the presence of the squeezing tones and fit a full model to the spectrum in order to deduce a quadrature variance of 0.80 +/- 0.03 times the zero-point level. These measurements provide the first evidence of quantum squeezing of motion in a mechanical resonator.
Resumo:
We analyze mutual alignment errors due to wave-front aberrations. To solve the central obscured problem, we introduce modified Zernike polynomials, which are a set of complete orthogonal polynomials. It is found that different aberrations have different effects on mutual alignment errors. Some aberrations influence only the line of sight, while some aberrations influence both the line of sight and the intensity distributions. (c) 2005 Optical Society of America
Resumo:
In order to measure the diffraction-limit wavefront, we present three types of common-path double-shearing interferometers based on the theory of double shearing. Two pairs of half-aperture or whole-aperture wedge plates are used to introduce opposite tilt to realize the double-shearing function. By comparing the fringe widths in two fields, the marginal wavefront aberration can be obtained. In the paper, we give three different configurations: half-aperture configuration, whole-field configuration and double-interferometer configuration. The half-aperture configuration has the features of high sensitivity, stabilization and easy alignment. For the whole-field configuration, the interference fringes are displayed in two whole fields. Consequently, the divergent or convergent characteristic and aberration types of a wavefront can be identified visually. The whole-field configuration can be changed to the double-interferometer configuration for continuous test. Both small and large wavefront aberrations can be measured by the double-interferometer configuration. The minimum detectable wavefront aberration (W-0)(min) comes to 0.03 lambda. Lastly, we present the experimental results for the three types of double-shearing interferometers.
Resumo:
As the feature size decreases, degradation of image quality caused by wavefront aberrations of projection optics in lithographic tools has become a serious problem in the low-k1 process. We propose a novel measurement technique for in situ characterizing aberrations of projection optics in lithographic tools. Considering the impact of the partial coherence illumination, we introduce a novel algorithm that accurately describes the pattern displacement and focus shift induced by aberrations. Employing the algorithm, the measurement condition is extended from three-beam interference to two-, three-, and hybrid-beam interferences. The experiments are performed to measure the aberrations of projection optics in an ArF scanner. (C) 2006 Optical Society of America.
Resumo:
A padronização para a fabricação de instrumentos endodônticos em aço inoxidável contribuiu para o desenvolvimento de novos aspectos geométricos. Surgiram propostas de alterações no desenho da haste helicoidal, da seção reta transversal, da ponta, da conicidade e do diâmetro na extremidade (D0). Concomitantemente, o emprego de ligas em Níquel-Titânio possibilitou a produção de instrumentos acionados a motor, largamente empregados hoje. A cada ano a indústria lança instrumentos com diversas modificações, sem, contudo, disponibilizar informações suficientes quanto às implicações clínicas destas modificações. Existe um crescente interesse no estudo dos diferentes aspectos geométricos e sua precisa metrologia. Tradicionalmente, a aferição de aspectos geométricos de instrumentos endodônticos é realizada visualmente através de microscopia ótica. Entretanto, esse procedimento visual é lento e subjetivo. Este trabalho propõe um novo método para a metrologia de instrumentos endodônticos baseado no microscópio eletrônico de varredura e na análise digital das imagens. A profundidade de campo do MEV permite obter a imagem de todo o relevo do instrumento endodôntico a uma distância de trabalho constante. Além disso, as imagens obtidas pelo detector de elétrons retro-espalhados possuem menos artefatos e sombras, tornando a obtenção e análise das imagens mais fáceis. Adicionalmente a análise das imagens permite formas de mensuração mais eficientes, com maior velocidade e qualidade. Um porta-amostras específico foi adaptado para obtenção das imagens dos instrumentos endodônticos. Ele é composto de um conector elétrico múltiplo com terminais parafusados de 12 pólos com 4 mm de diâmetro, numa base de alumínio coberta por discos de ouro. Os nichos do conector (terminais fêmeas) têm diâmetro apropriado (2,5 mm) para o encaixe dos instrumentos endodônticos. Outrossim, o posicionamento ordenado dos referidos instrumentos no conector elétrico permite a aquisição automatizada das imagens no MEV. Os alvos de ouro produzem, nas imagens de elétrons retro-espalhados, melhor contraste de número atômico entre o fundo em ouro e os instrumentos. No porta-amostras desenvolvido, os discos que compõem o fundo em ouro são na verdade, alvos do aparelho metalizador, comumente encontrados em laboratórios de MEV. Para cada instrumento, imagens de quatro a seis campos adjacentes de 100X de aumento são automaticamente obtidas para cobrir todo o comprimento do instrumento com a magnificação e resolução requeridas (3,12 m/pixel). As imagens obtidas são processadas e analisadas pelos programas Axiovision e KS400. Primeiro elas são dispostas num campo único estendido de cada instrumento por um procedimento de alinhamento semi-automático baseado na inter-relação com o Axiovision. Então a imagem de cada instrumento passa por uma rotina automatizada de análise de imagens no KS400. A rotina segue uma sequência padrão: pré-processamento, segmentação, pós-processamento e mensuração dos aspectos geométricos.
Resumo:
In this paper, the feed-forward back-propagation artificial neural network (BP-ANN) algorithm is introduced in the traditional Focus Calibration using Alignment procedure (FOCAL) technique, and a novel FOCAL technique based on BP-ANN is proposed. The effects of the parameters, such as the number of neurons on the hidden-layer and the number of training epochs, on the measurement accuracy are analyzed in detail. It is proved that the novel FOCAL technique based on BP-ANN is more reliable and it is a better choice for measurement of the image quality parameters. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Dammann gratings are well known for their ability to generate arrays of Lmiform-intensity beams from an incoming monochromatic beam. We apply the even-numbered Dammann grating to achieve dynamic optical coupled technology. A 1 x N dynamic optical coupled system is developed by employing two complementary even-numbered Dammann gratings. With this system we can achieve a beam splitter and combiner as a switch between them according to the relative shift between the gratings. Also, this system is a preferable approach in integral packaging. More importantly, this device has the potential to be applied to the splitting of a large array, e.g., 8 x 16 array and 64 x 64 array, which is difficult to be realized with conventional splitting methods. We experimentally demonstrated a 1 x 8 coupler at the wavelength of 1550 nm. Furthermore we analyze the effects of the alignment errors between gratings and the wavelength-dependent error on efficiency and uniformity. The experimental results and the influence of alignment error and wavelength-dependent error are analyzed in detail. (c) 2006 Optical Society of America.