941 resultados para Errors de sistemes (Enginyeria)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite recent methodological advances in inferring the time-scale of biological evolution from molecular data, the fundamental question of whether our substitution models are sufficiently well specified to accurately estimate branch-lengths has received little attention. I examine this implicit assumption of all molecular dating methods, on a vertebrate mitochondrial protein-coding dataset. Comparison with analyses in which the data are RY-coded (AG → R; CT → Y) suggests that even rates-across-sites maximum likelihood greatly under-compensates for multiple substitutions among the standard (ACGT) NT-coded data, which has been subject to greater phylogenetic signal erosion. Accordingly, the fossil record indicates that branch-lengths inferred from the NT-coded data translate into divergence time overestimates when calibrated from deeper in the tree. Intriguingly, RY-coding led to the opposite result. The underlying NT and RY substitution model misspecifications likely relate respectively to “hidden” rate heterogeneity and changes in substitution processes across the tree, for which I provide simulated examples. Given the magnitude of the inferred molecular dating errors, branch-length estimation biases may partly explain current conflicts with some palaeontological dating estimates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation(ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Adolescent idiopathic scoliosis is a complex three-dimensional deformity, involving a lateral deformity in the coronal plane and axial rotation of the vertebrae in the transverse plane. Gravitational loading plays an important biomechanical role in governing the coronal deformity, however, less is known about how they influence the axial deformity. This study investigates the change in three-dimensional deformity of a series of scoliosis patients due to compressive axial loading. Methods: Magnetic resonance imaging scans were obtained and coronal deformity (measured using the coronal Cobb angle) and axial rotations measured for a group of 18 scoliosis patients (Mean major Cobb angle was 43.4 o). Each patient was scanned in an unloaded and loaded condition while compressive loads equivalent to 50% body mass were applied using a custom developed compressive device. Findings: The mean increase in major Cobb angle due to compressive loading was 7.4 o (SD 3.5 o). The most axially rotated vertebra was observed at the apex of the structural curve and the largest average intravertebral rotations were observed toward the limits of the coronal deformity. A level-wise comparison showed no significant difference between the average loaded and unloaded vertebral axial rotations (intra-observer error = 2.56 o) or intravertebral rotations at each spinal level. Interpretation: This study suggests that the biomechanical effects of axial loading primarily influence the coronal deformity, with no significant change in vertebral axial rotation or intravertebral rotation observed between the unloaded and loaded condition. However, the magnitude of changes in vertebral rotation with compressive loading may have been too small to detect given the resolution of the current technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to grave potential human, environmental and economical consequences of collisions at sea, collision avoidance has become an important safety concern in navigation. To reduce the risk of collisions at sea, appropriate collision avoidance actions need to be taken in accordance with the regulations, i.e., International Regulations for Preventing Collisions at Sea. However, the regulations only provide qualitative rules and guidelines, and therefore it requires navigators to decide on collision avoidance actions quantitatively by using their judgments which often leads to making errors in navigation. To better help navigators in collision avoidance, this paper develops a comprehensive collision avoidance decision making model for providing whether a collision avoidance action is required, when to take action and what action to be taken. The model is developed based on three types of collision avoidance actions, such as course change only, speed change only, and a combination of both. The model has potential to reduce the chance of making human error in navigation by assisting navigators in decision making on collision avoidance actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pre-service teacher education is unfinished business. New social education teachers face the challenge of fluid policy environments in which curriculum content and pedagogy are continually changing. The evolving Australian curriculum is the most recent example of such fluidity with its emphasis on shifting the educational agenda to a focus on discipline-based approaches. This paper addresses the concerns of final year pre-service and early career social education teachers, in terms of their professional development needs, by drawing on the findings of a pilot study with students and recent graduates from a university in south-east Queensland. It concludes that social education curriculum units which embed links to professional practice and professional development in teaching, learning and assessment may provide the way forward for enhancing the transition to practice for beginning teachers and assist them in navigating constant change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decline of alertness constitutes a normal physiological phenomenon but could be aggravated when drivers operate in monotonous environments, even in rested individuals. Driving performance is impaired and this increases crash risk due to inattention. This paper aims to show that road characteristics - namely road design (road geometry) and road side variability (signage and buildings) – influence subjective assessment of alertness by drivers. This study used a driving simulator to investigate the drivers’ ability to subjectively detect periods of time when their alertness is importantly reduced by varying road geometry and road environment. Driver’s EEG activity is recorded as a reference to evaluate objectively driver's alertness and is compared to self-reported alertness by participants. Twenty-five participants drove on four different scenarios (varying road design and road environment monotony) for forty minutes. It was observed that participants were significantly more accurate in their assessment before the driving task as compared to after (90% versus 60%). Errors in assessment were largely underestimations of their real alertness rather than over-estimations. The ability to detect low alertness as assessed with an EEG was highly dependent on the road monotony. Scenarios with low roadside variability resulted in high overestimation of the real alertness, which was not observed on monotonous road design. The findings have consequences for road safety and suggest that countermeasures to lapses of alertness cannot rely solely on self-assessment from drivers and road design should reduce environments with low variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a formalism for the analysis of sensitivity of nuclear magnetic resonance pulse sequences to variations of pulse sequence parameters, such as radiofrequency pulses, gradient pulses or evolution delays. The formalism enables the calculation of compact, analytic expressions for the derivatives of the density matrix and the observed signal with respect to the parameters varied. The analysis is based on two constructs computed in the course of modified density-matrix simulations: the error interrogation operators and error commutators. The approach presented is consequently named the Error Commutator Formalism (ECF). It is used to evaluate the sensitivity of the density matrix to parameter variation based on the simulations carried out for the ideal parameters, obviating the need for finite-difference calculations of signal errors. The ECF analysis therefore carries a computational cost comparable to a single density-matrix or product-operator simulation. Its application is illustrated using a number of examples from basic NMR spectroscopy. We show that the strength of the ECF is its ability to provide analytic insights into the propagation of errors through pulse sequences and the behaviour of signal errors under phase cycling. Furthermore, the approach is algorithmic and easily amenable to implementation in the form of a programming code. It is envisaged that it could be incorporated into standard NMR product-operator simulation packages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Vertebral rotation found in structural scoliosis contributes to trunkal asymmetry which is commonly measured with a simple Scoliometer device on a patient's thorax in the forward flexed position. The new generation of mobile 'smartphones' have an integrated accelerometer, making accurate angle measurement possible, which provides a potentially useful clinical tool for assessing rib hump deformity. This study aimed to compare rib hump angle measurements performed using a Smartphone and traditional Scoliometer on a set of plaster torsos representing the range of torsional deformities seen in clinical practice. Methods. Nine observers measured the rib hump found on eight plaster torsos moulded from scoliosis patients with both a Scoliometer and an Apple iPhone on separate occasions. Each observer repeated the measurements at least a week after the original measurements, and were blinded to previous results. Intra-observer reliability and inter-observer reliability were analysed using the method of Bland and Altman and 95% confidence intervals were calculated. The Intra-Class Correlation Coefficients (ICC) were calculated for repeated measurements of each of the eight plaster torso moulds by the nine observers. Results. Mean absolute difference between pairs of iPhone/Scoliometer measurements was 2.1 degrees, with a small (1 degrees) bias toward higher rib hump angles with the iPhone. 95% confidence intervals for intra-observer variability were +/- 1.8 degrees (Scoliometer) and +/- 3.2 degrees (iPhone). 95% confidence intervals for inter-observer variability were +/- 4.9 degrees (iPhone) and +/- 3.8 degrees (Scoliometer). The measurement errors and confidence intervals found were similar to or better than the range of previously published thoracic rib hump measurement studies. Conclusions. The iPhone is a clinically equivalent rib hump measurement tool to the Scoliometer in spinal deformity patients. The novel use of plaster torsos as rib hump models avoids the variables of patient fatigue and discomfort, inconsistent positioning and deformity progression using human subjects in a single or multiple measurement sessions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A substantial body of literature exists identifying factors contributing to under-performing Enterprise Resource Planning systems (ERPs), including poor communication, lack of executive support and user dissatisfaction (Calisir et al., 2009). Of particular interest is Momoh et al.’s (2010) recent review identifying poor data quality (DQ) as one of nine critical factors associated with ERP failure. DQ is central to ERP operating processes, ERP facilitated decision-making and inter-organizational cooperation (Batini et al., 2009). Crucial in ERP contexts is that the integrated, automated, process driven nature of ERP data flows can amplify DQ issues, compounding minor errors as they flow through the system (Haug et al., 2009; Xu et al., 2002). However, the growing appreciation of the importance of DQ in determining ERP success lacks research addressing the relationship between stakeholders’ requirements and perceptions of ERP DQ, perceived data utility and the impact of users’ treatment of data on ERP outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: We investigated to what extent changes in metabolic rate and composition of weight loss explained the less-than-expected weight loss in obese men and women during a diet-plus-exercise intervention. Design: 16 obese men and women (41 ± 9 years; BMI 39 ± 6 kg/m2) were investigated in energy balance before, after and twice during a 12-week VLED (565–650 kcal/day) plus exercise (aerobic plus resistance training) intervention. The relative energy deficit (EDef) from baseline requirements was severe (74-87%). Body composition was measured by deuterium dilution and DXA and resting metabolic rate (RMR) by indirect calorimetry. Fat mass (FM) and fat-free mass (FFM) were converted into energy equivalents using constants: 9.45 kcal/gFM and 1.13 kcal/gFFM. Predicted weight loss was calculated from the energy deficit using the '7700 kcal/kg rule'. Results: Changes in weight (-18.6 ± 5.0 kg), FM (-15.5 ± 4.3 kg), and FFM (-3.1 ± 1.9 kg) did not differ between genders. Measured weight loss was on average 67% of the predicted value, but ranged from 39 to 94%. Relative EDef was correlated with the decrease in RMR (R=0.70, P<0.01) and the decrease in RMR correlated with the difference between actual and expected weight loss (R=0.51, P<0.01). Changes in metabolic rate explained on average 67% of the less-than-expected weight loss, and variability in the proportion of weight lost as FM accounted for a further 5%. On average, after adjustment for changes in metabolic rate and body composition of weight lost, actual weight loss reached 90% of predicted values. Conclusion: Although weight loss was 33% lower than predicted at baseline from standard energy equivalents, the majority of this differential was explained by physiological variables. While lower-than-expected weight loss is often attributed to incomplete adherence to prescribed interventions, the influence of baseline calculation errors and metabolic down-regulation should not be discounted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To compare self-reported driving ability with objective measures of on-road driving performance in a large cohort of older drivers. Methods 270 community-living adults aged 70 – 88 years recruited via the electoral roll completed a standardized assessment of on-road driving performance and questionnaires determining perceptions of their own driving ability, confidence and driving difficulties. Retrospective self-reported crash data over the previous five years were recorded. Results Participants reported difficulty with only selected driving situations, including driving into the sun, in unfamiliar areas, in wet conditions, and at night or dusk. The majority of participants rated their own driving as good to excellent. Of the 47 (17%) of drivers who were rated as potentially unsafe to drive, 66% rated their own driving as good to excellent. Drivers who made critical errors, where the driving instructor had to take control of the vehicle, had no lower self-rating of driving ability then the rest of the group. The discrepancy in self-perceptions of driving and participants’ safety rating on the on-road assessment was significantly associated with self-reported retrospective crash rates, where those drivers who displayed greater overconfidence in their own driving were significantly more likely to report a crash. Conclusions This study demonstrates that older drivers with the greatest mismatch between actual and self-rated driving ability pose the greatest risk to road safety. Therefore licensing authorities should not assume that when older individuals’ driving abilities begin to decline they will necessarily be aware of these changes and adopt appropriate compensatory driving behaviours; rather, it is essential that evidence-based assessments are adopted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Facial expression is an important channel of human social communication. Facial expression recognition (FER) aims to perceive and understand emotional states of humans based on information in the face. Building robust and high performance FER systems that can work in real-world video is still a challenging task, due to the various unpredictable facial variations and complicated exterior environmental conditions, as well as the difficulty of choosing a suitable type of feature descriptor for extracting discriminative facial information. Facial variations caused by factors such as pose, age, gender, race and occlusion, can exert profound influence on the robustness, while a suitable feature descriptor largely determines the performance. Most present attention on FER has been paid to addressing variations in pose and illumination. No approach has been reported on handling face localization errors and relatively few on overcoming facial occlusions, although the significant impact of these two variations on the performance has been proved and highlighted in many previous studies. Many texture and geometric features have been previously proposed for FER. However, few comparison studies have been conducted to explore the performance differences between different features and examine the performance improvement arisen from fusion of texture and geometry, especially on data with spontaneous emotions. The majority of existing approaches are evaluated on databases with posed or induced facial expressions collected in laboratory environments, whereas little attention has been paid on recognizing naturalistic facial expressions on real-world data. This thesis investigates techniques for building robust and high performance FER systems based on a number of established feature sets. It comprises of contributions towards three main objectives: (1) Robustness to face localization errors and facial occlusions. An approach is proposed to handle face localization errors and facial occlusions using Gabor based templates. Template extraction algorithms are designed to collect a pool of local template features and template matching is then performed to covert these templates into distances, which are robust to localization errors and occlusions. (2) Improvement of performance through feature comparison, selection and fusion. A comparative framework is presented to compare the performance between different features and different feature selection algorithms, and examine the performance improvement arising from fusion of texture and geometry. The framework is evaluated for both discrete and dimensional expression recognition on spontaneous data. (3) Evaluation of performance in the context of real-world applications. A system is selected and applied into discriminating posed versus spontaneous expressions and recognizing naturalistic facial expressions. A database is collected from real-world recordings and is used to explore feature differences between standard database images and real-world images, as well as between real-world images and real-world video frames. The performance evaluations are based on the JAFFE, CK, Feedtum, NVIE, Semaine and self-collected QUT databases. The results demonstrate high robustness of the proposed approach to the simulated localization errors and occlusions. Texture and geometry have different contributions to the performance of discrete and dimensional expression recognition, as well as posed versus spontaneous emotion discrimination. These investigations provide useful insights into enhancing robustness and achieving high performance of FER systems, and putting them into real-world applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Often CAD models already exist for parts of a geometry being simulated using GEANT4. Direct import of these CAD models into GEANT4 however,may not be possible and complex components may be diffcult to define via other means. Solutions that allow for users to work around the limited support in the GEANT4 toolkit for loading predefined CAD geometries have been presented by others, however these solutions require intermediate file format conversion using commercial software. Here within we describe a technique that allows for CAD models to be directly loaded as geometry without the need for commercial software and intermediate file format conversion. Robustness of the interface was tested using a set of CAD models of various complexity; for the models used in testing, no import errors were reported and all geometry was found to be navigable by GEANT4. Funding source: Cancer Australia (Department of Health and Ageing) Research Grant 614217

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model has been developed to track the flow of cane constituents through the milling process. While previous models have tracked the flow of fibre, brix and water through the process, this model tracks the soluble and insoluble solid cane components using modelling theory and experiment data, assisting in further understanding the flow of constituents into mixed juice and final bagasse. The work provided an opportunity to understand the factors which affect the distribution of the cane constituents in juice and bagasse. Application of the model should lead to improvements in the overall performance of the milling train.