Investigating the change in three dimensional deformity for idiopathic scoliosis using axially loaded MRI


Autoria(s): Little, J.P.; Izatt, M.T.; Labrom, R.D.; Askin, G.N.; Adam, C.J.
Data(s)

01/06/2012

Resumo

Background: Adolescent idiopathic scoliosis is a complex three-dimensional deformity, involving a lateral deformity in the coronal plane and axial rotation of the vertebrae in the transverse plane. Gravitational loading plays an important biomechanical role in governing the coronal deformity, however, less is known about how they influence the axial deformity. This study investigates the change in three-dimensional deformity of a series of scoliosis patients due to compressive axial loading. Methods: Magnetic resonance imaging scans were obtained and coronal deformity (measured using the coronal Cobb angle) and axial rotations measured for a group of 18 scoliosis patients (Mean major Cobb angle was 43.4 o). Each patient was scanned in an unloaded and loaded condition while compressive loads equivalent to 50% body mass were applied using a custom developed compressive device. Findings: The mean increase in major Cobb angle due to compressive loading was 7.4 o (SD 3.5 o). The most axially rotated vertebra was observed at the apex of the structural curve and the largest average intravertebral rotations were observed toward the limits of the coronal deformity. A level-wise comparison showed no significant difference between the average loaded and unloaded vertebral axial rotations (intra-observer error = 2.56 o) or intravertebral rotations at each spinal level. Interpretation: This study suggests that the biomechanical effects of axial loading primarily influence the coronal deformity, with no significant change in vertebral axial rotation or intravertebral rotation observed between the unloaded and loaded condition. However, the magnitude of changes in vertebral rotation with compressive loading may have been too small to detect given the resolution of the current technique.

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/50921/

Publicador

Elsevier

Relação

http://eprints.qut.edu.au/50921/1/50921.pdf

DOI:10.1016/j.clinbiomech.2011.12.004

Little, J.P., Izatt, M.T., Labrom, R.D., Askin, G.N., & Adam, C.J. (2012) Investigating the change in three dimensional deformity for idiopathic scoliosis using axially loaded MRI. Clinical Biomechanics, 27(5), pp. 415-421.

Direitos

Copyright 2011 Elsevier Ltd.

NOTICE: this is the author’s version of a work that was accepted for publication in Clinical Biomechanics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Clinical Biomechanics, [Volume 27, Issue 5, (June 2012)]. DOI: 10.1016/j.clinbiomech.2011.12.004

Fonte

School of Chemistry, Physics & Mechanical Engineering; Institute of Health and Biomedical Innovation; Science & Engineering Faculty

Palavras-Chave #090000 ENGINEERING #110000 MEDICAL AND HEALTH SCIENCES #Axial compression #Biomechanics #Inter-vertebral rotation #Intravertebral rotation #MRI #Scoliosis #Adolescent idiopathic scoliosis #Axial loading #Axial rotation #Biomechanical effects #Body mass #Compressive loading #Compressive loads #Coronal planes #Gravitational loading #Idiopathic scoliosis #Intra-observer errors #Transverse planes #Axial loads #Deformation #Loading #Magnetic resonance imaging #Musculoskeletal system #Three dimensional #Rotation #adolescent #adult #article #child #clinical article #compression #human #image analysis #load carrying capacity #nuclear magnetic resonance imaging #priority journal #school child #spine malformation #three dimensional imaging
Tipo

Journal Article