946 resultados para Dispersion of seeds
Resumo:
The contemporary society is characterized by high risks. Today, the prevention of damages is as important as compensation. This is due to the fact that the potentiality of several damages is not in line with compensation, because often compensation proves to be impossible. Civil law should be at the service of the citizens, which explains that the heart of the institution of non-contractual liability has gradually moved towards the victim's protection. It is requested from Tort law an active attitude that seeks to avoid damages, reducing its dimension and frequency. The imputation by risk proves to be necessary and useful in the present context as it demonstrates the ability to model behaviors, functioning as a warning for agents engaged in hazardous activities. Economically, it seeks to prevent socially inefficient behaviors. Strict liability assumes notorious importance as a deterrent and in the dispersion of damage by society. The paradigm of the imputation founded on fault has proved insufficient for the effective protection of the interests of the citizens, particularly if based in an anachronistic vision of the concept of fault. Prevention arises in several areas, especially in environmental liability, producer liability and liability based on infringement of copyright and rights relating to the personality. To overcome the damage as the gauge for compensation does not inevitably mean the recognition of the punitive approach. Prevention should not be confused with reactive/punitive objectives. The deterrence of unlawful conduct is not subordinated to punishment.
Resumo:
Economics is a social science which, therefore, focuses on people and on the decisions they make, be it in an individual context, or in group situations. It studies human choices, in face of needs to be fulfilled, and a limited amount of resources to fulfill them. For a long time, there was a convergence between the normative and positive views of human behavior, in that the ideal and predicted decisions of agents in economic models were entangled in one single concept. That is, it was assumed that the best that could be done in each situation was exactly the choice that would prevail. Or, at least, that the facts that economics needed to explain could be understood in the light of models in which individual agents act as if they are able to make ideal decisions. However, in the last decades, the complexity of the environment in which economic decisions are made and the limits on the ability of agents to deal with it have been recognized, and incorporated into models of decision making in what came to be known as the bounded rationality paradigm. This was triggered by the incapacity of the unboundedly rationality paradigm to explain observed phenomena and behavior. This thesis contributes to the literature in three different ways. Chapter 1 is a survey on bounded rationality, which gathers and organizes the contributions to the field since Simon (1955) first recognized the necessity to account for the limits on human rationality. The focus of the survey is on theoretical work rather than the experimental literature which presents evidence of actual behavior that differs from what classic rationality predicts. The general framework is as follows. Given a set of exogenous variables, the economic agent needs to choose an element from the choice set that is avail- able to him, in order to optimize the expected value of an objective function (assuming his preferences are representable by such a function). If this problem is too complex for the agent to deal with, one or more of its elements is simplified. Each bounded rationality theory is categorized according to the most relevant element it simplifes. Chapter 2 proposes a novel theory of bounded rationality. Much in the same fashion as Conlisk (1980) and Gabaix (2014), we assume that thinking is costly in the sense that agents have to pay a cost for performing mental operations. In our model, if they choose not to think, such cost is avoided, but they are left with a single alternative, labeled the default choice. We exemplify the idea with a very simple model of consumer choice and identify the concept of isofin curves, i.e., sets of default choices which generate the same utility net of thinking cost. Then, we apply the idea to a linear symmetric Cournot duopoly, in which the default choice can be interpreted as the most natural quantity to be produced in the market. We find that, as the thinking cost increases, the number of firms thinking in equilibrium decreases. More interestingly, for intermediate levels of thinking cost, an equilibrium in which one of the firms chooses the default quantity and the other best responds to it exists, generating asymmetric choices in a symmetric model. Our model is able to explain well-known regularities identified in the Cournot experimental literature, such as the adoption of different strategies by players (Huck et al. , 1999), the inter temporal rigidity of choices (Bosch-Dom enech & Vriend, 2003) and the dispersion of quantities in the context of di cult decision making (Bosch-Dom enech & Vriend, 2003). Chapter 3 applies a model of bounded rationality in a game-theoretic set- ting to the well-known turnout paradox in large elections, pivotal probabilities vanish very quickly and no one should vote, in sharp contrast with the ob- served high levels of turnout. Inspired by the concept of rhizomatic thinking, introduced by Bravo-Furtado & Côrte-Real (2009a), we assume that each per- son is self-delusional in the sense that, when making a decision, she believes that a fraction of the people who support the same party decides alike, even if no communication is established between them. This kind of belief simplifies the decision of the agent, as it reduces the number of players he believes to be playing against { it is thus a bounded rationality approach. Studying a two-party first-past-the-post election with a continuum of self-delusional agents, we show that the turnout rate is positive in all the possible equilibria, and that it can be as high as 100%. The game displays multiple equilibria, at least one of which entails a victory of the bigger party. The smaller one may also win, provided its relative size is not too small; more self-delusional voters in the minority party decreases this threshold size. Our model is able to explain some empirical facts, such as the possibility that a close election leads to low turnout (Geys, 2006), a lower margin of victory when turnout is higher (Geys, 2006) and high turnout rates favoring the minority (Bernhagen & Marsh, 1997).
Resumo:
Given the current economic situation of the Portuguese municipalities, it is necessary to identify the priority investments in order to achieve a more efficient financial management. The classification of the road network of the municipality according to the occurrence of traffic accidents is fundamental to set priorities for road interventions. This paper presents a model for road network classification based on traffic accidents integrated in a geographic information system. Its practical application was developed through a case study in the municipality of Barcelos. An equation was defined to obtain a road safety index through the combination of the following indicators: severity, property damage only and accident costs. In addition to the road network classification, the application of the model allows to analyze the spatial coverage of accidents in order to determine the centrality and dispersion of the locations with the highest incidence of road accidents. This analysis can be further refined according to the nature of the accidents namely in collision, runoff and pedestrian crashes.
Resumo:
Dissertação de mestrado em Propriedades e Tecnologias de Polímeros
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
This study analyses the determinants of dispersion of economic issue mentions in European party manifestos. We examined three main economic domains (governmental control of the economy, free market capitalism and support for the welfare state) as consequences of globalization forces, economic conditions, partisanship and electoral turnout. Employing aggregate-level Comparative Manifesto Project (CMP) data from legislative elections in 15 European countries from 1970 to 2010, we confirm that parties hold a common view of the salience of economic control of the state as a consequence of globalization pressure and economic growth levels. Partisanship of the cabinets (regardless of the political orientation) counteracted issue salience concentration in the welfare domain. Government size favoured dispersion in the free market realm. Our results do not indicate clear homogenization of parties’ economic messages in elections over the last 40 years.
Resumo:
Dissertação de Mestrado em Estratégia
Resumo:
The general properties of POISSON distributions and their relations to the binomial distribuitions are discussed. Two methods of statistical analysis are dealt with in detail: X2-test. In order to carry out the X2-test, the mean frequency and the theoretical frequencies for all classes are calculated. Than the observed and the calculated frequencies are compared, using the well nown formula: f(obs) - f(esp) 2; i(esp). When the expected frequencies are small, one must not forget that the value of X2 may only be calculated, if the expected frequencies are biger than 5. If smaller values should occur, the frequencies of neighboroughing classes must ge pooled. As a second test reintroduced by BRIEGER, consists in comparing the observed and expected error standard of the series. The observed error is calculated by the general formula: δ + Σ f . VK n-1 where n represents the number of cases. The theoretical error of a POISSON series with mean frequency m is always ± Vm. These two values may be compared either by dividing the observed by the theoretical error and using BRIEGER's tables for # or by dividing the respective variances and using SNEDECOR's tables for F. The degree of freedom for the observed error is one less the number of cases studied, and that of the theoretical error is always infinite. In carrying out these tests, one important point must never be overlloked. The values for the first class, even if no concrete cases of the type were observed, must always be zero, an dthe value of the subsequent classes must be 1, 2, 3, etc.. This is easily seen in some of the classical experiments. For instance in BORKEWITZ example of accidents in Prussian armee corps, the classes are: no, one, two, etc., accidents. When counting the frequency of bacteria, these values are: no, one, two, etc., bacteria or cultures of bacteria. Ins studies of plant diseases equally the frequencies are : no, one, two, etc., plants deseased. Howewer more complicated cases may occur. For instance, when analising the degree of polyembriony, frequently the case of "no polyembryony" corresponds to the occurrence of one embryo per each seed. Thus the classes are not: no, one, etc., embryo per seed, but they are: no additional embryo, one additional embryo, etc., per seed with at least one embryo. Another interestin case was found by BRIEGER in genetic studies on the number os rows in maize. Here the minimum number is of course not: no rows, but: no additional beyond eight rows. The next class is not: nine rows, but: 10 rows, since the row number varies always in pairs of rows. Thus the value of successive classes are: no additional pair of rows beyond 8, one additional pair (or 10 rows), two additional pairs (or 12 rows) etc.. The application of the methods is finally shown on the hand of three examples : the number of seeds per fruit in the oranges M Natal" and "Coco" and in "Calamondin". As shown in the text and the tables, the agreement with a POISSON series is very satisfactory in the first two cases. In the third case BRIEGER's error test indicated a significant reduction of variability, and the X2 test showed that there were two many fruits with 4 or 5 seeds and too few with more or with less seeds. Howewer the fact that no fruit was found without seed, may be taken to indicate that in Calamondin fruits are not fully parthenocarpic and may develop only with one seed at the least. Thus a new analysis was carried out, on another class basis. As value for the first class the following value was accepted: no additional seed beyond the indispensable minimum number of one seed, and for the later classes the values were: one, two, etc., additional seeds. Using this new basis for all calculations, a complete agreement of the observed and expected frequencies, of the correspondig POISSON series was obtained, thus proving that our hypothesis of the impossibility of obtaining fruits without any seed was correct for Calamondin while the other two oranges were completely parthenocarpic and fruits without seeds did occur.
Resumo:
This paper deals with problems on population genetics in Hymenoptera and particularly in social Apidae. 1) The studies on populations of Hymenoptera were made according to the two basic types of reproduction: endogamy and panmixia. The populations of social Apinae have a mixed method of reproduction with higher percentage of panmixia and a lower of endogamy. This is shown by the following a) males can enter any hive in swarming time; b) males of Meliponini are expelled from hives which does not need them, and thus, are forced to look for some other place; c) Meliponini males were seen powdering themselves with pollen, thus becoming more acceptable in any other hive. The panmixia is not complete owing to the fact that the density of the breeding population as very low, even in the more frequent species as low as about 2 females and 160 males per reproductive area. We adopted as selection values (or survival indices) the expressions according to Brieger (1948,1950) which may be summarised as follows; a population: p2AA + ²pq Aa + q2aa became after selection: x p2AA + 2pq Aa + z q²aa. For alge-braics facilities Brieger divided the three selective values by y giving thus: x/y p2 AA + y/y 2 pq Aa + z/y q²aa. He called x/y of RA and z/y of Ra, that are survival or selective index, calculated in relation to the heterozygote. In our case all index were calculated in relation to the heterozygote, including the ones for haploid males; thus we have: RA surveval index of genotype AA Ra surveval index of genotype aa R'A surveval index of genotype A R'a surveval index of genotype a 1 surveval index of genotype Aa The index R'A ande R'a were equalized to RA and Ra, respectively, for facilities in the conclusions. 2) Panmitic populations of Hymenoptera, barring mutations, migrations and selection, should follow the Hardy-Weinberg law, thus all gens will be present in the population in the inicial frequency (see Graphifc 1). 3) Heterotic genes: If mutation for heterotic gene ( 1 > RA > Ra) occurs, an equilibrium will be reached in a population when: P = R A + Ra - 2R²a _____________ (9) 2(R A + Ra - R²A - R²a q = R A + Ra - 2R²A _____________ (10) 2(R A + Ra - R²A - R²a A heterotic gene in an hymenopteran population may be maintained without the aid of new mutation only if the survival index of the most viable mutant (RA) does not exced the limiting value given by the formula: R A = 1 + √1+Ra _________ 4 If RA has a value higher thah the one permitted by the formula, then only the more viable gene will remain present in the population (see Graphic 10). The only direct proof for heterotic genes in Hymenoptera was given by Mackensen and Roberts, who obtained offspring from Apis mellefera L. queens fertilized by their own sons. Such inbreeding resulted in a rapid loss of vigor the colony; inbred lines intercrossed gave a high hybrid vigor. Other fats correlated with the "heterosis" problem are; a) In a colony M. quadrifasciata Lep., which suffered severely from heat, the percentage of deths omong males was greater .than among females; b) Casteel and Phillips had shown that in their samples (Apis melifera L). the males had 7 times more abnormalities tian the workers (see Quadros IV to VIII); c) just after emerging the males have great variation, but the older ones show a variation equal to that of workers; d) The tongue lenght of males of Apis mellifera L., of Bombus rubicundus Smith (Quadro X), of Melipona marginata Lep. (Quadro XI), and of Melipona quadrifasciata Lep. Quadro IX, show greater variationthan that of workers of the respective species. If such variation were only caused by subviables genes a rapid increasse of homozigoty for the most viable alleles should be expected; then, these .wild populations, supposed to be in equilibrium, could .not show such variability among males. Thus we conclude that heterotic genes have a grat importance in these cases. 4) By means of mathematical models, we came to the conclusion tht isolating genes (Ra ^ Ra > 1), even in the case of mutations with more adaptability, have only the opor-tunity of survival when the population number is very low (thus the frequency of the gene in the breeding population will be large just after its appearence). A pair of such alleles can only remain present in a population when in border regions of two races or subspecies. For more details see Graphics 5 to 8. 5) Sex-limited genes affecting only females, are of great importance toHymenoptera, being subject to the same limits and formulas as diploid panmitic populations (see formulas 12 and 13). The following examples of these genes were given: a) caste-determining genes in the genus Melipona; b) genes permiting an easy response of females to differences in feeding in almost all social Hymenoptera; c) two genes, found in wild populations, one in Trigona (Plebéia) mosquito F. SMITH (quadro XII) and other in Melipona marginata marginata LEP. (Quadro XIII, colonies 76 and 56) showing sex-limited effects. Sex-limited genes affecting only males do not contribute to the plasticity or genie reserve in hymenopteran populations (see formula 14). 6) The factor time (life span) in Hymenoptera has a particular importance for heterotic genes. Supposing one year to be the time unit and a pair of heterotic genes with respective survival indice equal to RA = 0, 90 and Ra = 0,70 to be present; then if the life time of a population is either one or two years, only the more viable gene will remain present (see formula 11). If the species has a life time of three years, then both alleles will be maintained. Thus we conclude that in specis with long lif-time, the heterotic genes have more importance, and should be found more easily. 7) The colonies of social Hymenoptera behave as units in competition, thus in the studies of populations one must determine the survival index, of these units which may be subdivided in indice for egg-laying, for adaptive value of the queen, for working capacity of workers, etc. 8) A study of endogamic hymenopteran populations, reproduced by sister x brother mating (fig. 2), lead us to the following conclusions: a) without selection, a population, heterozygous for one pair of alleles, will consist after some generations (theoretically after an infinite number of generation) of females AA fecundated with males A and females aa fecundated with males a (see Quadro I). b) Even in endogamic population there is the theoretical possibility of the presence of heterotic genes, at equilibrium without the aid of new mutations (see Graphics 11 and 12), but the following! conditions must be satisfied: I - surveval index of both homozygotes (RA e Ra) should be below 0,75 (see Graphic 13); II - The most viable allele must riot exced the less viable one by more than is permited by the following formula (Pimentel Gomes 1950) (see Gra-fic 14) : 4 R5A + 8 Ra R4A - 4 Ra R³A (Ra - 1) R²A - - R²a (4 R²a + 4 Ra - 1) R A + 2 R³a < o Considering these two conditions, the existance of heterotic genes in endogamic populations of Hymenoptera \>ecames very improbable though not - impossible. 9) Genie mutation offects more hymenopteran than diploid populations. Thus we have for lethal genes in diploid populations: u = q2, and in Hymenoptera: u = s, being u the mutation ratio and s the frequency of the mutant in the male population. 10) Three factors, important to competition among species of Meliponini were analysed: flying capacity of workers, food gathering capacity of workers, egg-laying of the queen. In this connection we refer to the variability of the tongue lenght observed in colonies from several localites, to the method of transporting the pollen in the stomach, from some pots (Melliponi-ni storage alveolus) to others (e. g. in cases of pillage), and to the observation that the species with the most populous hives are almost always the most frequent ones also. 11) Several defensive ways used for Meliponini to avoid predation are cited, but special references are made upon the camouflage of both hive (fig. 5) and hive entrance (fig. 4) and on the mimetism (see list in page ). Also under the same heading we described the method of Lestrimelitta for pillage. 12) As mechanisms important for promoting genetic plasticity of hymenopteran species we cited: a) cytological variations and b) genie reserve. As to the former, duplications and numerical variations of chromosomes were studied. Diprion simile ATC was cited as example for polyploidy. Apis mellife-ra L. (n = 16) also sugests polyploid origen since: a) The genus Melipona, which belongs to a" related tribe, presents in all species so far studied n = 9 chromosomes and b) there occurs formation of dyads in the firt spermatocyte division. It is su-gested that the origin of the sex-chromosome of Apis mellifera It. may be related to the possible origin of diplo-tetraploidy in this species. With regards to the genie reserve, several possible types of mutants were discussed. They were classified according to their survival indices; the heterotic and neutral mutants must be considered as more important for the genie reserve. 13) The mean radius from a mother to a daghter colony was estimated as 100 meters. Since the Meliponini hives swarm only once a year we may take 100 meters a year as the average dispersion of female Meliponini in ocordance to data obtained from Trigona (tetragonisca) jaty F. SMITH and Melipona marginata LEP., while other species may give different values. For males the flying distance was roughly estimated to be 10 times that for females. A review of the bibliography on Meliponini swarm was made (pg. 43 to 47) and new facts added. The population desity (breeding population) corresponds in may species of Meliponini to one male and one female per 10.000 square meters. Apparently the males are more frequent than the females, because there are sometimes many thousands, of males in a swarm; but for the genie frequency the individuals which have descendants are the ones computed. In the case of Apini and Meliponini, only one queen per hive and the males represented by. the spermatozoos in its spermateca are computed. In Meliponini only one male mate with the queen, while queens of Apis mellijera L. are fecundated by an average of about 1, 5 males. (Roberts, 1944). From the date cited, one clearly sees that, on the whole, populations of wild social bees (Meliponini) are so small that the Sewall Wright effect may become of great importance. In fact applying the Wright's formula: f = ( 1/aN♂ + 1/aN♀) (1 - 1/aN♂ + 1/aN♀) which measures the fixation and loss of genes per generation, we see that the fixation or loss of genes is of about 7% in the more frequent species, and rarer species about 11%. The variation in size, tergite color, background color, etc, of Melipona marginata Lep. is atributed to this genetic drift. A detail, important to the survival of Meliponini species, is the Constance of their breeding population. This Constance is due to the social organization, i. e., to the care given to the reproductive individuals (the queen with its sperm pack), to the way of swarming, to the food storage intended to control variations of feeding supply, etc. 14) Some species of the Meliponini are adapted to various ecological conditions and inhabit large geographical areas (e. g. T. (Tetragonisca jaty F. SMITH), and Trigona (Nanno-trigona testaceicornis LEP.) while others are limited to narrow regions with special ecological conditions (e. g. M. fuscata me-lanoventer SCHWARZ). Other species still, within the same geographical region, profit different ecological conditions, as do M. marginata LEP. and M. quadrifasciata LEP. The geographical distribution of Melipona quadrifasciata LEP. is different according to the subspecies: a) subsp anthidio-des LEP. (represented in Fig. 7 by black squares) inhabits a region fron the North of the S. Paulo State to Northeastern Brazil, ,b) subspecies quadrifasciata LEP., (marked in Fig. 7 with black triangles) accurs from the South of S. Paulo State to the middle of the State of Rio Grande do Sul (South Brazil). In the margined region between these two areas of distribution, hi-brid colonies were found (Fig. 7, white circles); they are shown with more details in fig. 8, while the zone of hybridization is roughly indicated in fig. 9 (gray zone). The subspecies quadrifasciata LEP., has 4 complete yellow bands on the abdominal tergites while anthidioides LEP. has interrupted ones. This character is determined by one or two genes and gives different adaptative properties to the subspecies. Figs. 10 shows certains meteorological isoclines which have aproximately the same configuration as the limits of the hybrid zone, suggesting different climatic adaptabilities for both genotypes. The exis-tance of a border zone between the areas of both subspecies, where were found a high frequency of hybrids, is explained as follows: being each subspecies adapted to a special climatic zone, we may suppose a poor adaptation of either one in the border region, which is also a region of intermediate climatic conditions. Thus, the hybrids, having a combination of the parent qualities, will be best adapted to the transition zone. Thus, the hybrids will become heterotic and an equilibrium will be reached with all genotypes present in the population in the border region.
Resumo:
1 - This paper is a joined publication of the Dept. of Genetics, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, and Secção de Citricultura e Frutas Tropicais, Instituto Agronômico, de Campinas, and deal with the number of seed per fruit and the polyembryony in Citrus, with special reference to the pummelos (C. grandis). 2 - For C. pectinifera, hibrid limon x acid lime, C. histrix and Citrus sp. the mean of seeds per fruit is 5,8 - 17,3 - 30,2 -94,6; for 14 pummelos the average was 100 and the range of variation 11 to 185 seeds per fruit. For the four above mentioned Citrus the cotyledons were classified into 3 types: big (near 8 mm.), medium (near 6 mm) and small (near 4 mm) and for the pummelos there was only one size of cotyledons, about 10 mm (table 1). 3 - The polyembryony was determined by two processes: a) counting of the embryos in the mature seed; b) counting after germination in flats or seed-beds. The rasults obtained are in table 2; the process a gave larger results than process b.The following pummelos are monoembryonics: melancia, inerme, Kaune Paune, sunshine, vermelha, Singapura, periforme, Zamboa, doce, Indochina, Lau-Tau, Shantenyau and Siamesa. Sometime it was found a branching of the main stem that gave a impression of polyembryonic seeds. 4 - It was shown by the x2 test that the distribution of embryo numbers fits the Poisson's series (table 2) in both processes. 5 - It is discussed in table 2 the variability of polyembryony for the following cases: a) between plants, within years. The teste for the differences of mean of polyembryony between 3 plants of C. pectinifera is statistically significant in 1948 and 1949; b) between yields of the same plant, within year. The same case of C. pectinifera may be used for this purpose; c) between process, within year. It is shown in table 3, for C. pectinifera and the hibrid "limon x acid lime" that there is a statistically signicicant between both process above mentioned.
Resumo:
1 - The Author, in this 3 thd. contribution, concludes the study of the biology and ecology of the species Tristicha trifaria (Willd.) Spreng. and Mourera aspera (Bong.) Tul., both of the Piracicaba Fall. 2 - According to the results of Dr. Peter van Royen (State Herbarium of Leiden, Holland), who made a complete revision of Podostemaceae of the Piracicaba Fall, the species Tristicha hypnoides (St. Hil.) Spreng. var. Hilarii Tul. and Mnioppsis Glazioviana Warm, correspond, respectively, to theTristicha trifaria (Willd.) Spreng. and Mniopsis weddelliana Tul. Apinagia Accorsii Toledo was transferred by Royen to the genus Wettsteiniola. So, its new name is Wettsteiniola accorsii (Toledo) v. Royen. 3 - Propagation by seeds may occur in the following places: a) placenta of partially open fruits; b) external and internal walls of the open capsules; c) pedicels of the fruits; d) remains of rhizomes, branches, etc. e) organic residues accumulated in water holes in the fall; f) clean rocks, in which the little groups of seedlings seems to be a colony of algae. Seeds adhere to the substrata above by means, of a mucilage produced by the transformation of the external integuments in contact with water. 4 - In the growth of the four species below it was found in Piracicaba Fall conspicuous zoning so scattered: a) Wettsteiniola accorsii (Toledo) v. Royen, in rocks situated just within the water fall, where velocity of the current and aeration of the water are very high. b) Tristicha trifaria (Willd.) Spreng. and Mniopsis weddelliana Tul., in rocks at some distance (100 m more or less) upstream until near the bridge across the river. c) Mourera aspera (Bong.) Tul., 300 m upwards the bridge. 5- During 1949, the ecological conditions of the Piracicaba Fall were changed due to the following factors: a) dry season very long, begining from last period of June until 30 november; b) stopping, during four months, of water from the Atibaia river (one of the components of Piracicaba river) near to the city of Americana, in the place where a new station of the Companhia Paulista de Força e Luz was build. In consequence, most of the Podostemaceae died. On the dry rocks there were only fruits and dried plants. 6 - Tristicha trifaria has the same biological and ecological behavior as the Mniopsis weddelliana,. 7 - The vegetative propagation of Tristicha trifaria is made by increasing of its branches, production of stolons with vegetatives buds and regeneration of old parts in especial conditions of water and aeration. 8 - Mourera aspera has the same vegetative propagation as the Wettsteiniola accorsii; it produces stolons (in very little percentage) with vegetative buds, branches of the rhizomes and regeneration of active old parts. 9 - Frequently, there is, on the plants an accumulation of sand, silt, loam, organic substances, and so on. The quantity of material stored depends of the purity of the water, of the morphology of the plants and of the situation on the fall. 10 - In extrem conditions of dry heat, the surviving of the species in its habitat depends exclusively from germination of seeds in the mentioned substrata. Exceptionally, some plants survive in a few water pockets full with the weak remaining current.
Resumo:
This paper is a joined publication of the Depts. of Genetics and of Technology, of the E. S. A. "Luiz de Queiroz", Universidade de São Paulo, and deals with the variation of the percentage oil content in the whole seeds, the embryos and the seed-coat of 28 varieties of castor-beans (Ricinus communis, L.). Primarily, the authors, as a justification of this paper, make reference to the applications which castor-oil has in industry, medicine, etc. In accordance with the weight of 100 seeds, the varieties of castor-beans were classified into 3 classes : small seeds (100 seeds less than 30 g), medium seeds (100 seeds between 30 g and 60) and large seeds (100 seeds more than 60 g). The percentage of oil in the seed, embryo and seed-coat, the dimensions of the seeds and the weight of 100 seeds are given for every variety in table 1. In order to obtain an estimate of the variability for the methods of determination of the oil percentage, in the 3 differents parts of the seeds and also in the 3 groups of seeds, the coefficient of variability was calculate (table 2). It is showed that the variation in the seed and embryo is low and that in the seed-coat is very high. The analysis of variance, with regard to the difference among the 3 types of seeds (small, medium and large), among the 3 parts of the seed (whole seed, embryo and seed-coat) and residual error, is given in table 3. Only, the oil content of whole seeds among types of seeds was significant at the 5% level. The t test among the correspondent means is not significant for the difference between medium and large seeds is significant between both these types (medium and large) and small seeds. The fiducial limits in relation to the mean of the oil percentage in the 3 differents types of seed, show that there is one variety (n. 1013-2), which has a percentage of oil, in the medium type of seed, significantly at the 5% level (table 4), higher than the general mean. Since the distribution of the percentage of oil in the seedcoat is discontinuous, 5 groups were established (table 5). All the differences between groups are significant (table 6). For practical purposes, when we have to remove the seed coat, one should eliminate those varieties which loose at least 3% of oil by this procedure. There is a significant linear correlation at 5% level between the percentage of oil in the seed and in the embryo, of the smali and medium type of seeds (table 7), and also, when taking the 3 types together (lower part of table 7), one finds that the same is true. Also, the correlation between the percentages of oil in the embryo and in the seed-coat of the 3 types together is significant at 5% level. According to the results obtained in relation to the percentage in 28 varieties studied, it can be recommended, for breeding purposes, to work only with those varieties which belong to the medium and the large types of seeds.
Resumo:
The results reported in this paper did not show statistical differences in production of seeds, number of plants and number of ears when corn fertilizer (combination of Chilean nitrate, superphosphate and potassium chloride) was applied either in the sowing furrow or in lateral furrows (one or both side). The treatments with fertilizer were better than the treatment without fertilizer used for comparisons. Cotton seed meal, used in combination with superphosphate and potassium chloride, placed in the sowing furrow, reduces statistically the number of plants in the row when compared with the treatments where applications were made only in lateral furrows. However, this reduction of plants did not affect significantly the number of ears and the production in the treatments.
Resumo:
The author studied the storage of seeds of mango trees with the aim of Keeping high its ability of germination. Seven means of storage were tried, with two temperatures: environment temperature (22 to 27 degrees Centigrade) and cold store room (5 degrees centigrade). The methods of storage tried were: 1 - The frewit kept complete. 2 - Seeds taken within the stone. 3 - Seeds taken out of the stone. 4 - Stones heated with a Fungicida (Zineb). 5 - Stones cut laterally and heated with a fungicide (Zineb). 6 - Seeds (out of sones) heated with Zineb. 7 - Stones steatified with sand. The best results were obtained for seeds kept within whole fruits, probably owing to protection provided by outer layers. The use of fungicide imposed the sanitary aspect of seeds and stones. Storage in cold store room (5 degrees Centigrade) injured the seeds and stones in all cases. Germinating power was kept high up to 70 days for complete fruits. It seems that biggers fruits were more favorable to keep high the ability of theirs seeds to germinate.