859 resultados para Data mining, Business intelligence, Previsioni di mercato
Resumo:
This paper consist in the establishment of a Virtual Producer/Consumer Agent (VPCA) in order to optimize the integrated management of distributed energy resources and to improve and control Demand Side Management DSM) and its aggregated loads. The paper presents the VPCA architecture and the proposed function-based organization to be used in order to coordinate the several generation technologies, the different load types and storage systems. This VPCA organization uses a frame work based on data mining techniques to characterize the costumers. The paper includes results of several experimental tests cases, using real data and taking into account electricity generation resources as well as consumption data.
Resumo:
Many current e-commerce systems provide personalization when their content is shown to users. In this sense, recommender systems make personalized suggestions and provide information of items available in the system. Nowadays, there is a vast amount of methods, including data mining techniques that can be employed for personalization in recommender systems. However, these methods are still quite vulnerable to some limitations and shortcomings related to recommender environment. In order to deal with some of them, in this work we implement a recommendation methodology in a recommender system for tourism, where classification based on association is applied. Classification based on association methods, also named associative classification methods, consist of an alternative data mining technique, which combines concepts from classification and association in order to allow association rules to be employed in a prediction context. The proposed methodology was evaluated in some case studies, where we could verify that it is able to shorten limitations presented in recommender systems and to enhance recommendation quality.
Resumo:
Introduction: A major focus of data mining process - especially machine learning researches - is to automatically learn to recognize complex patterns and help to take the adequate decisions strictly based on the acquired data. Since imaging techniques like MPI – Myocardial Perfusion Imaging on Nuclear Cardiology, can implicate a huge part of the daily workflow and generate gigabytes of data, there could be advantages on Computerized Analysis of data over Human Analysis: shorter time, homogeneity and consistency, automatic recording of analysis results, relatively inexpensive, etc.Objectives: The aim of this study relates with the evaluation of the efficacy of this methodology on the evaluation of MPI Stress studies and the process of decision taking concerning the continuation – or not – of the evaluation of each patient. It has been pursued has an objective to automatically classify a patient test in one of three groups: “Positive”, “Negative” and “Indeterminate”. “Positive” would directly follow to the Rest test part of the exam, the “Negative” would be directly exempted from continuation and only the “Indeterminate” group would deserve the clinician analysis, so allowing economy of clinician’s effort, increasing workflow fluidity at the technologist’s level and probably sparing time to patients. Methods: WEKA v3.6.2 open source software was used to make a comparative analysis of three WEKA algorithms (“OneR”, “J48” and “Naïve Bayes”) - on a retrospective study using the comparison with correspondent clinical results as reference, signed by nuclear cardiologist experts - on “SPECT Heart Dataset”, available on University of California – Irvine, at the Machine Learning Repository. For evaluation purposes, criteria as “Precision”, “Incorrectly Classified Instances” and “Receiver Operating Characteristics (ROC) Areas” were considered. Results: The interpretation of the data suggests that the Naïve Bayes algorithm has the best performance among the three previously selected algorithms. Conclusions: It is believed - and apparently supported by the findings - that machine learning algorithms could significantly assist, at an intermediary level, on the analysis of scintigraphic data obtained on MPI, namely after Stress acquisition, so eventually increasing efficiency of the entire system and potentially easing both roles of Technologists and Nuclear Cardiologists. In the actual continuation of this study, it is planned to use more patient information and significantly increase the population under study, in order to allow improving system accuracy.
Resumo:
Projecto para obtenção do grau de Mestre em Engenharia Informática e de computadores
Resumo:
TPM Vol. 21, No. 4, December 2014, 435-447 – Special Issue © 2014 Cises.
Resumo:
Perante a evolução constante da Internet, a sua utilização é quase obrigatória. Através da web, é possível conferir extractos bancários, fazer compras em países longínquos, pagar serviços sem sair de casa, entre muitos outros. Há inúmeras alternativas de utilização desta rede. Ao se tornar tão útil e próxima das pessoas, estas começaram também a ganhar mais conhecimentos informáticos. Na Internet, estão também publicados vários guias para intrusão ilícita em sistemas, assim como manuais para outras práticas criminosas. Este tipo de informação, aliado à crescente capacidade informática do utilizador, teve como resultado uma alteração nos paradigmas de segurança informática actual. Actualmente, em segurança informática a preocupação com o hardware é menor, sendo o principal objectivo a salvaguarda dos dados e continuidade dos serviços. Isto deve-se fundamentalmente à dependência das organizações nos seus dados digitais e, cada vez mais, dos serviços que disponibilizam online. Dada a mudança dos perigos e do que se pretende proteger, também os mecanismos de segurança devem ser alterados. Torna-se necessário conhecer o atacante, podendo prever o que o motiva e o que pretende atacar. Neste contexto, propôs-se a implementação de sistemas de registo de tentativas de acesso ilícitas em cinco instituições de ensino superior e posterior análise da informação recolhida com auxílio de técnicas de data mining (mineração de dados). Esta solução é pouco utilizada com este intuito em investigação, pelo que foi necessário procurar analogias com outras áreas de aplicação para recolher documentação relevante para a sua implementação. A solução resultante revelou-se eficaz, tendo levado ao desenvolvimento de uma aplicação de fusão de logs das aplicações Honeyd e Snort (responsável também pelo seu tratamento, preparação e disponibilização num ficheiro Comma Separated Values (CSV), acrescentando conhecimento sobre o que se pode obter estatisticamente e revelando características úteis e previamente desconhecidas dos atacantes. Este conhecimento pode ser utilizado por um administrador de sistemas para melhorar o desempenho dos seus mecanismos de segurança, tais como firewalls e Intrusion Detection Systems (IDS).
Resumo:
Esta dissertação aborda o problema de detecção e desvio de obstáculos "SAA- Sense And Avoid" em movimento para veículos aéreos. Em particular apresenta contribuições tendo em vista a obtenção de soluções para permitir a utilização de aeronaves não tripuladas em espaço aéreo não segregado e para aplicações civis. Estas contribuições caracterizam-se por: uma análise do problema de SAA em \UAV's - Unmmaned Aerial Vehicles\ civis; a definição do conceito e metodologia para o projecto deste tipo de sistemas; uma proposta de \ben- chmarking\ para o sistema SAA caracterizando um conjunto de "datasets\ adequados para a validação de métodos de detecção; respectiva validação experimental do processo e obtenção de "datasets"; a análise do estado da arte para a detecção de \Dim point features\ ; o projecto de uma arquitectura para uma solução de SAA incorporando a integração de compensação de \ego motion" e respectiva validação para um "dataset" recolhido. Tendo em vista a análise comparativa de diferentes métodos bem como a validação de soluções foi proposta a recolha de um conjunto de \datasets" de informação sensorial e de navegação. Para os mesmos foram definidos um conjunto de experiências e cenários experimentais. Foi projectado e implementado um setup experimental para a recolha dos \datasets" e realizadas experiências de recolha recorrendo a aeronaves tripuladas. O setup desenvolvido incorpora um sistema inercial de alta precisão, duas câmaras digitais sincronizadas (possibilitando análise de informa formação stereo) e um receptor GPS. As aeronaves alvo transportam um receptor GPS com logger incorporado permitindo a correlação espacial dos resultados de detecção. Com este sistema foram recolhidos dados referentes a cenários de aproximação com diferentes trajectórias e condições ambientais bem como incorporando movimento do dispositivo detector. O método proposto foi validado para os datasets recolhidos tendo-se verificado, numa análise preliminar, a detecção do obstáculo (avião ultraleve) em todas as frames para uma distância inferior a 3 km com taxas de sucesso na ordem dos 95% para distâncias entre os 3 e os 4 km. Os resultados apresentados permitem validar a arquitectura proposta para a solução do problema de SAA em veículos aéreos autónomos e abrem perspectivas muito promissoras para desenvolvimento futuro com forte impacto técnico-científico bem como sócio-economico. A incorporação de informa formação de \ego motion" permite fornecer um forte incremento em termos de desempenho.
Resumo:
Ao longo dos últimos anos, as regras de associação têm assumido um papel relevante na extracção de informação e de conhecimento em base de dados e vêm com isso auxiliar o processo de tomada de decisão. A maioria dos trabalhos de investigação desenvolvidos sobre regras de associação têm por base o modelo de suporte e confiança. Este modelo permite obter regras de associação que envolvem particularmente conjuntos de itens frequentes. Contudo, nos últimos anos, tem-se explorado conjuntos de itens que surgem com menor frequência, designados de regras de associação raras ou infrequentes. Muitas das regras com base nestes itens têm particular interesse para o utilizador. Actualmente a investigação sobre regras de associação procuram incidir na geração do maior número possível de regras com interesse aglomerando itens raros e frequentes. Assim, este estudo foca, inicialmente, uma pesquisa sobre os principais algoritmos de data mining que abordam as regras de associação. A finalidade deste trabalho é examinar as técnicas e algoritmos de extracção de regras de associação já existentes, verificar as principais vantagens e desvantagens dos algoritmos na extracção de regras de associação e, por fim, desenvolver um algoritmo cujo objectivo é gerar regras de associação que envolvem itens raros e frequentes.
Resumo:
OBJETIVO: Analisar desfechos clínicos de pacientes incidentes em hemodiálise vinculados a operadora de plano de saúde.MÉTODOS: Estudo de coorte de incidentes em hemodiálise em Belo Horizonte, MG, de 2004 a 2008, a partir de registros no banco de dados de operadora de planos de saúde. Variáveis independentes: sexo, idade, tempo entre primeira consulta com nefrologista e início da hemodiálise, tipo do primeiro acesso vascular, diabetes mellitus, tempo de permanência hospitalar/ano de tratamento e óbito. Variáveis dependentes: tempo entre início da hemodiálise e óbito e tempo de permanência hospitalar/ano de tratamento > 7,5 dias. Análise estatística: teste Qui-quadrado de Pearson na análise univariada para os desfechos óbito e tempo de permanência hospitalar/ano de tratamento; método de Kaplan-Meier para análise de sobrevida; modelo de Cox e regressão Poisson para risco de óbito e chance de tempo de permanência hospitalar/ano de tratamento > 7,5 dias. Foi utilizada ferramenta de Business Intelligence para extração dos dados e software Stata(r) 10.0.RESULTADOS: Estudados 311 indivíduos em hemodiálise, 55,5% homens, média de 62 anos (dp: 16,6 anos). A prevalência aumentou 160% no período estudado. Na análise de sobrevivência a mortalidade foi maior entre os mais idosos, nos que não realizaram consulta com nefrologista, fizeram uso de cateter vascular temporário como primeiro acesso, com diabetes mellitus, nos que foram internados no mesmo mês do início da hemodiálise. No modelo de Cox associaram-se a maior risco para óbito a idade avançada, diabetes mellitus, não realizar consulta prévia com nefrologista e internar-se no primeiro mês de hemodiálise. Maior tempo de permanência hospitalar/ano de tratamento não se associou ao sexo e diabetes. As variáveis não foram significativas na regressão Poisson.CONCLUSÕES: A avaliação pelo especialista antes do início da hemodiálise diminui o risco de óbito na doença renal crônica terminal, enquanto o diabetes e internação no mesmo mês de início da hemodiálise são marcadores de risco para o óbito.
Resumo:
Tese submetida à Universidade Portucalense para obtenção do grau de Mestre em Informática, elaborada sob a orientação de Prof. Doutor Reis Lima e Eng. Jorge S. Coelho.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
ABSTRACT This study aimed to describe the digital disease detection and participatory surveillance in different countries. The systems or platforms consolidated in the scientific field were analyzed by describing the strategy, type of data source, main objectives, and manner of interaction with users. Eleven systems or platforms, developed from 1996 to 2016, were analyzed. There was a higher frequency of data mining on the web and active crowdsourcing as well as a trend in the use of mobile applications. It is important to provoke debate in the academia and health services for the evolution of methods and insights into participatory surveillance in the digital age.
Resumo:
Dissertação de Mestrado
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
A procura de padrões nos dados de modo a formar grupos é conhecida como aglomeração de dados ou clustering, sendo uma das tarefas mais realizadas em mineração de dados e reconhecimento de padrões. Nesta dissertação é abordado o conceito de entropia e são usados algoritmos com critérios entrópicos para fazer clustering em dados biomédicos. O uso da entropia para efetuar clustering é relativamente recente e surge numa tentativa da utilização da capacidade que a entropia possui de extrair da distribuição dos dados informação de ordem superior, para usá-la como o critério na formação de grupos (clusters) ou então para complementar/melhorar algoritmos existentes, numa busca de obtenção de melhores resultados. Alguns trabalhos envolvendo o uso de algoritmos baseados em critérios entrópicos demonstraram resultados positivos na análise de dados reais. Neste trabalho, exploraram-se alguns algoritmos baseados em critérios entrópicos e a sua aplicabilidade a dados biomédicos, numa tentativa de avaliar a adequação destes algoritmos a este tipo de dados. Os resultados dos algoritmos testados são comparados com os obtidos por outros algoritmos mais “convencionais" como o k-médias, os algoritmos de spectral clustering e um algoritmo baseado em densidade.