939 resultados para Contribución
Resumo:
Arquímedes es el matemático y científico de todos los tiempos, desde la Antigüedad hasta nuestros días; en él se personifican variedad de métodos para resolver situaciones matemáticas y científicas, además de ideas fundamentales que han acompañado la evolución de muchos conceptos de las matemáticas y las ciencias; entre ellas están las ideas sobre el cálculo integral, la geometría de los cuerpos redondos, la cuadratura de la parábola, la conceptualización sobre espejos y poleas, la palanca y las ideas sobre flotación de los cuerpos, a través de la experimentación. Es por ello que, siguiendo algunas de sus rutas, se desarrollará el taller “Algunas ideas matemáticas y físicas de Arquímedes”, mostrando a través de algunas de estas experiencias desarrollos metodológicos, e integración de ideas de las matemáticas con otras áreas del conocimiento científico. Además, estos métodos permiten desarrollar ideas, que pueden ser aplicadas en procesos de aprendizaje de algunos conceptos de las matemáticas, que son enseñados en la Educación Básica y Media de nuestros jóvenes. Asimismo, en este taller mostraremos algunos senderos de aprendizaje de las matemáticas, integrados a las ciencias naturales, siguiendo algunos métodos arquimedianos, en ambientes de la metodología de Aula Taller, donde el aprender haciendo, el uso de material tangible, el apoyo en guías de trabajo, el construir las ideas y los conceptos son, es la clave el conocimiento. Esto lo compartiremos con los maestros a través del estudio de los cuerpos redondos y las ideas de flotación de los cuerpos. Cabe aclarar, además que, ni la metodología ni el tema a trabajar han sido explorados en nuestro país. Es por ello que queremos compartirlo, ya que es una experiencia que hemos vivido en otros espacios y que ha tenido un buen resultado.
Resumo:
En este taller los participantes, a partir del desarrollo de una tarea, identifican algunas etapas en la formulación y validación de conjeturas. La tarea se centra en la exploración de un applet relacionado con la ecuación vectorial de la recta en el plano, a partir del cual se identifican algunas propiedades geométricas del objeto geométrico y, con estas, se establecen e intentan validar generalidades. Este taller surge en el marco del proyecto de investigación “Razonamientos abductivos, inductivos y deductivos desarrollados por estudiantes del curso de Geometría Analítica al realizar una tarea relacionada con la representación de objetos geométricos en distintos sistemas coordenados” que se realiza este año en la Universidad Pedagógica Nacional.
Resumo:
La presente comunicación busca poner de manifiesto algunas consideraciones que se pueden tener en cuenta a la hora de diseñar rutas de aprendizaje en torno al concepto de límite. En este sentido, el documento se estructura por medio de dos preguntas cuyas respuestas coinciden con las dos principales consideraciones resultado de este trabajo; dichos interrogantes (para qué de la enseñanza del límite, y cómo lograrla) permiten evidenciar la comprensión del concepto límite como un proceso que da lugar al desarrollo de procesos de profundización, con los cuales se alcanza la forma más pura de la competencia matemática.
Resumo:
El presente escrito reporta un estudio llevado a cabo para investigar las ideas de aleatoriedad de un grupo de estudiantes de décimo grado cuando resuelven problemas de naturaleza aleatoria. La investigación se realizó en el marco de la clase de Matemáticas durante cinco sesiones de hora y treinta minutos cada una en las que se desarrolló una unidad didáctica. La información fue recogida mediante observaciones de clase, interacciones de estudiantes, entrevistas semi-estructuradas y artefactos documentales con la producción de los estudiantes. Los principales resultados revelan que los estudiantes tienen ideas sobre aleatoriedad que van desde explicaciones ingenuas hasta explicaciones sustentadas.
Resumo:
A través del taller se muestra la posibilidad del uso del programa computacional Cabri para el desarrollo del pensamiento variacional especialmente; mostrando el comportamiento general de cada una de las funciones trigonométricas en el plano cartesiano, graficándolas en el mismo plano haciendo una simulación de eje y sobre el mismo sistema coordenado.
Resumo:
Presentamos parte de un trabajo de exploración en la didáctica de la matemática, en el cual desarrollamos un tema de gran importancia, como es la proporcionalidad, desde otras áreas, que si bien tienen este concepto como elemento fundamental, no han sido aprovechadas ni puestas en evidencia suficientemente dentro del campo de la enseñanza de la matemática, nos referimos a la música y al dibujo. También se toma la vida cotidiana como un campo de aplicación natural del concepto de proporcionalidad.
Resumo:
Para la Educación Matemática, el uso de la tecnología computacional hoy, reviste particular interés investigativo en lo que respecta al aprendizaje de las matemáticas de nuestros niños y niñas en las instituciones escolares; dado que, la tecnología computacional posibilita el estudio (tratamiento) de los objetos matemáticos y sistemas de representación y las representaciones semióticas que constituyen un elemento básico para entender la construcción del conocimiento de los estudiantes (Lupiañez, Moreno,1999) y desde las actividades cognitivas de representación inherentes a la semiosis: formación, tratamiento y conversión, de registros semióticos (Duval,1999).
Resumo:
En el marco del proyecto "Incorporación de Nuevas Tecnologías al Currículo de Matemáticas de la Educación Media de Colombia", se han suscitado una serie de actividades y situaciones problemas con el propósito de potenciar el desarrollo del pensamiento matemático de los alumnos en el nivel medio y en el universitario. En el caso del Departamento del Cesar, se han trabajado diversos problemas que conllevan al desarrollo del pensamiento variacional, sin descartar que en el proceso se utilicen los pensamientos geométrico, numérico, métrico y aleatorio.
Resumo:
El estudio de las magnitudes y su medida es de gran importancia, debido a su aplicabilidad y uso en una gran cantidad de actividades de la vida cotidiana; así por ejemplo, frecuentemente es necesario tomar decisiones acerca de situaciones como: el tamaño de unos muebles, de modo que resulten acordes con el tamaño de una habitación, y la forma de acomodarlos para que la longitud de las dimensiones del objeto se acoplen a la puerta de dicha habitación; si el espacio disponible en un parqueadero es suficiente para estacionar o no un vehículo; la cantidad de papel o de cualquier otro material, necesario para realizar un determinado trabajo; cálculo o estimación de la distancia entre dos puntos; etc.; casos en los cuales se hace necesario recurrir a un cierto conocimiento y manejo de la magnitud longitud; en donde se puede considerar que la construcción de este concepto es un proceso que requiere la interacción entre los estudiantes y las situaciones del entorno, en el cual se encuentran objetos con características susceptibles de ser medidas, de las cuales la longitud, será el interés en este documento. Pero si cotidianamente se utiliza este concepto, podría surgir la pregunta ¿Los estudiantes han construido completamente el concepto longitud?
Resumo:
La teoría de la probabilidad es una rama importante dentro del desarrollo del pensamiento aleatorio, y en general, de la educación matemática, pues promueve el uso de heurísticas para realizar predicciones y tomar decisiones en torno a una situación del diario vivir. Si bien, en los lineamientos curriculares y en los estándares básicos de calidad se citan conceptos y temáticas en relación con la probabilidad que deben ser abordadas en las aulas de clase, las formas usuales de enseñanza ponen en evidencia el énfasis determinista que recae en la cultura escolar.
Resumo:
Desde hace unos años, he detectado que los estudiantes presentan dificultades en las conversiones entre unidades de medida. La primera dificultad se presenta, en el hecho, de que ellos, cuando están frente a un problema de estos, un gran número no realizan los planteamientos pertinentes, pues el primer interrogante, es el tipo de operación que deben aplicar, sin hacer el análisis correspondiente; la segunda, es la memorización de una operación, puesto que en la mayoría de las situaciones aplican el método tradicional, multiplicar o dividir, de acuerdo al orden de la conversión y a la información que han recibido, y en ocasiones obtiene resultados erráticos, que el estudiante los percibe como correctos o coherentes; la tercera es la equivalencia entre las unidades de medida, más que todo entre los múltiplos y submúltiplos de las unidades básicas, aparentemente no parece un problema importante, pero en el momento de realizar la conversión, es donde se detecta la incidencia de este error; la cuarta, es la falta de comprensión de los resultados, es decir, para ellos en ocasiones es normal, que ciertas respuestas sean normales, sin tener en cuenta su coherencia, por ejemplo, determinar que 35cm sea igual a 35 metros, o 3500 metros, etc.; la quinta, es el olvido de las transformaciones entre unidades de medida de forma rápida, ya que, al cabo de cierto tiempo, cuando es tema es necesitado en una clase, el estudiante no lo recuerda con la solidez que el docente desea. Estos motivos nos impulsan a interrogarnos, ¿qué hacer, para tratar de superar estas dificultades en los estudiantes de secundaria y universitarios?
Resumo:
En el presente trabajo se aborda el estudio de la variación de una función cualquiera cuando se tiene sólo su representación gráfica y no se conoce su representación algebraica, así como la relación de la función con su primera y su segunda derivada y la relación entre tales derivadas, esto es, la información que puede proporcionar cada derivada acerca de la función y la información que aporta cada derivada con respecto a la otra.
Resumo:
El informe que se presenta es el resultado de nuestro trabajo de investigación para optar el título de Licenciadas en educación básica con énfasis en matemáticas. Se diseñó e implementó una secuencia de actividades sobre la enseñanza de la noción de Probabilidad marginal y conjunta a 72 estudiantes de Grado Undécimo del Instituto Técnico Industrial Francisco José de Caldas, teniendo como referente la resolución de problemas y la teoría de las situaciones didácticas propuestas por Brousseau.
Resumo:
Pensar en una evaluación en competencias nos remite a pensar, en el sentido de la evaluación, del termino competencia, pero sobre todo a las practicas pedagógicas sobre componentes curriculares y su sentido en la formación de los niños y jóvenes de nuestro país. Una evaluación en competencias, es una evaluación que centra la atención en el saber hacer y en el hacer sabiendo, que debe permitir reconocer las diferencias y las potencialidades de nuestros jóvenes, de esta manera el reto pedagógico de todo maestro radica en el tipo de problema o de actividad que le propone al estudiante para activar sus competencias o favorecer su desarrollo. Los desempeños son expresiones de esas competencias y aunque no son exclusivos de una determinada área si están asociados a campos del saber específicos, dadas las particularidades de las disciplinas de conocimiento. Es en este sentido que nos proponemos discutir sobre algunas competencias y desempeños asociados al saber algebraico.
Resumo:
La cuadratura de una figura es la transformación de dicha figura en un cuadrado equivalente (de igual área). Cualquier figura se puede transformar en un rectángulo equivalente y todo rectángulo se puede transformar en un cuadrado equivalente.