886 resultados para COMPUTER NETWORKS
Resumo:
We propose an efficient scheduling scheme that optimizes advance-reserved lightpath services in reconfigurable WDM networks. A re-optimization approach is devised to reallocate network resources for dynamic service demands while keeping determined schedule unchanged.
Resumo:
We propose a resource-sharing scheme that supports three kinds of sharing scenarios in a WDM mesh network with path-based protection and sparse OEO regeneration. Several approaches are used to maximize the sharing of wavelength-links and OEO regenerators.
Resumo:
An analytical model for Virtual Topology Reconfiguration (VTR) in optical networks is developed. It aims at the optical networks with a circuit-based data plane and an IPlike control plane. By identifying and analyzing the important factors impacting the network performance due to VTR operations on both planes, we can compare the benefits and penalties of different VTR algorithms and policies. The best VTR scenario can be adaptively chosen from a set of such algorithms and policies according to the real-time network situations. For this purpose, a cost model integrating all these factors is created to provide a comparison criterion independent of any specific VTR algorithm and policy. A case study based on simulation experiments is conducted to illustrate the application of our models.
Resumo:
Translucent WDM optical networks use sparse placement of regenerators to overcome the impairments and wavelength contention introduced by fully transparent networks, and achieve a performance close to fully opaque networks with much less cost. Our previous study proved the feasibility of translucent networks using sparse regeneration technique. We addressed the placement of regenerators based on static schemes allowing only fixed number of regenerators at fixed locations. This paper furthers the study by proposing a suite of dynamical routing schemes. Dynamic allocation, advertisement and discovery of regeneration resources are proposed to support sharing transmitters and receivers between regeneration and access functions. This study follows the current trend in optical networking industry by utilizing extension of IP control protocols. Dynamic routing algorithms, aware of current regeneration resources and link states, are designed to smartly route the connection requests under quality constraints. A hierarchical network model, supported by the MPLS-based control plane, is also proposed to provide scalability. Experiments show that network performance is improved without placement of extra regenerators.
Resumo:
The emergence of Wavelength Division Multiplexing (WDM) technology provides the capability for increasing the bandwidth of Synchronous Optical Network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add-drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom in the traffic and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently.
Resumo:
Wavelength division multiplexing (WDM) offers a solution to the problem of exploiting the large bandwidth on optical links; it is the current favorite multiplexing technology for optical communication networks. Due to the high cost of an optical amplifier, it is desirable to strategically place the amplifiers throughout the network in a way that guarantees that all the signals are adequately amplified while minimizing the total number amplifiers being used. Previous studies all consider a star-based network. This paper demonstrates an original approach for solving the problem in switch-based WDM optical network assuming the traffic matrix is always the permutation of the nodes. First we formulate the problem by choosing typical permutations which can maximize traffic load on individual links; then a GA (Genetic Algorithm) is used to search for feasible amplifier placements. Finally, by setting up all the lightpaths without violating the power constaints we confirm the feasibility of the solution.
Resumo:
Sparse traffic grooming is a practical problem to be addressed in heterogeneous multi-vendor optical WDM networks where only some of the optical cross-connects (OXCs) have grooming capabilities. Such a network is called as a sparse grooming network. The sparse grooming problem under dynamic traffic in optical WDM mesh networks is a relatively unexplored problem. In this work, we propose the maximize-lightpath-sharing multi-hop (MLS-MH) grooming algorithm to support dynamic traffic grooming in sparse grooming networks. We also present an analytical model to evaluate the blocking performance of the MLS-MH algorithm. Simulation results show that MLSMH outperforms an existing grooming algorithm, the shortest path single-hop (SPSH) algorithm. The numerical results from analysis show that it matches closely with the simulation. The effect of the number of grooming nodes in the network on the blocking performance is also analyzed.
Resumo:
In this paper, a cross-layer solution for packet size optimization in wireless sensor networks (WSN) is introduced such that the effects of multi-hop routing, the broadcast nature of the physical wireless channel, and the effects of error control techniques are captured. A key result of this paper is that contrary to the conventional wireless networks, in wireless sensor networks, longer packets reduce the collision probability. Consequently, an optimization solution is formalized by using three different objective functions, i.e., packet throughput, energy consumption, and resource utilization. Furthermore, the effects of end-to-end latency and reliability constraints are investigated that may be required by a particular application. As a result, a generic, cross-layer optimization framework is developed to determine the optimal packet size in WSN. This framework is further extended to determine the optimal packet size in underwater and underground sensor networks. From this framework, the optimal packet sizes under various network parameters are determined.
Resumo:
The integration of CMOS cameras with embedded processors and wireless communication devices has enabled the development of distributed wireless vision systems. Wireless Vision Sensor Networks (WVSNs), which consist of wirelessly connected embedded systems with vision and sensing capabilities, provide wide variety of application areas that have not been possible to realize with the wall-powered vision systems with wired links or scalar-data based wireless sensor networks. In this paper, the design of a middleware for a wireless vision sensor node is presented for the realization of WVSNs. The implemented wireless vision sensor node is tested through a simple vision application to study and analyze its capabilities, and determine the challenges in distributed vision applications through a wireless network of low-power embedded devices. The results of this paper highlight the practical concerns for the development of efficient image processing and communication solutions for WVSNs and emphasize the need for cross-layer solutions that unify these two so-far-independent research areas.
Resumo:
Semi-supervised learning is one of the important topics in machine learning, concerning with pattern classification where only a small subset of data is labeled. In this paper, a new network-based (or graph-based) semi-supervised classification model is proposed. It employs a combined random-greedy walk of particles, with competition and cooperation mechanisms, to propagate class labels to the whole network. Due to the competition mechanism, the proposed model has a local label spreading fashion, i.e., each particle only visits a portion of nodes potentially belonging to it, while it is not allowed to visit those nodes definitely occupied by particles of other classes. In this way, a "divide-and-conquer" effect is naturally embedded in the model. As a result, the proposed model can achieve a good classification rate while exhibiting low computational complexity order in comparison to other network-based semi-supervised algorithms. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method.
Resumo:
Semi-supervised learning techniques have gained increasing attention in the machine learning community, as a result of two main factors: (1) the available data is exponentially increasing; (2) the task of data labeling is cumbersome and expensive, involving human experts in the process. In this paper, we propose a network-based semi-supervised learning method inspired by the modularity greedy algorithm, which was originally applied for unsupervised learning. Changes have been made in the process of modularity maximization in a way to adapt the model to propagate labels throughout the network. Furthermore, a network reduction technique is introduced, as well as an extensive analysis of its impact on the network. Computer simulations are performed for artificial and real-world databases, providing a numerical quantitative basis for the performance of the proposed method.
Resumo:
A set of predictor variables is said to be intrinsically multivariate predictive (IMP) for a target variable if all properly contained subsets of the predictor set are poor predictors of the. target but the full set predicts the target with great accuracy. In a previous article, the main properties of IMP Boolean variables have been analytically described, including the introduction of the IMP score, a metric based on the coefficient of determination (CoD) as a measure of predictiveness with respect to the target variable. It was shown that the IMP score depends on four main properties: logic of connection, predictive power, covariance between predictors and marginal predictor probabilities (biases). This paper extends that work to a broader context, in an attempt to characterize properties of discrete Bayesian networks that contribute to the presence of variables (network nodes) with high IMP scores. We have found that there is a relationship between the IMP score of a node and its territory size, i.e., its position along a pathway with one source: nodes far from the source display larger IMP scores than those closer to the source, and longer pathways display larger maximum IMP scores. This appears to be a consequence of the fact that nodes with small territory have larger probability of having highly covariate predictors, which leads to smaller IMP scores. In addition, a larger number of XOR and NXOR predictive logic relationships has positive influence over the maximum IMP score found in the pathway. This work presents analytical results based on a simple structure network and an analysis involving random networks constructed by computational simulations. Finally, results from a real Bayesian network application are provided. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Competitive learning is an important machine learning approach which is widely employed in artificial neural networks. In this paper, we present a rigorous definition of a new type of competitive learning scheme realized on large-scale networks. The model consists of several particles walking within the network and competing with each other to occupy as many nodes as possible, while attempting to reject intruder particles. The particle's walking rule is composed of a stochastic combination of random and preferential movements. The model has been applied to solve community detection and data clustering problems. Computer simulations reveal that the proposed technique presents high precision of community and cluster detections, as well as low computational complexity. Moreover, we have developed an efficient method for estimating the most likely number of clusters by using an evaluator index that monitors the information generated by the competition process itself. We hope this paper will provide an alternative way to the study of competitive learning.
Resumo:
The number of citations received by authors in scientific journals has become a major parameter to assess individual researchers and the journals themselves through the impact factor. A fair assessment therefore requires that the criteria for selecting references in a given manuscript should be unbiased with regard to the authors or journals cited. In this paper, we assess approaches for citations considering two recommendations for authors to follow while preparing a manuscript: (i) consider similarity of contents with the topics investigated, lest related work should be reproduced or ignored; (ii) perform a systematic search over the network of citations including seminal or very related papers. We use formalisms of complex networks for two datasets of papers from the arXiv and the Web of Science repositories to show that neither of these two criteria is fulfilled in practice. By representing the texts as complex networks we estimated a similarity index between pieces of texts and found that the list of references did not contain the most similar papers in the dataset. This was quantified by calculating a consistency index, whose maximum value is one if the references in a given paper are the most similar in the dataset. For the areas of "complex networks" and "graphenes", the consistency index was only 0.11-0.23 and 0.10-0.25, respectively. To simulate a systematic search in the citation network, we employed a traditional random walk search (i.e. diffusion) and a random walk whose probabilities of transition are proportional to the number of the ingoing edges of the neighbours. The frequency of visits to the nodes (papers) in the network had a very small correlation with either the actual list of references in the papers or with the number of downloads from the arXiv repository. Therefore, apparently the authors and users of the repository did not follow the criterion related to a systematic search over the network of citations. Based on these results, we propose an approach that we believe is fairer for evaluating and complementing citations of a given author, effectively leading to a virtual scientometry.
Resumo:
It has been revealed that the network of excitable neurons via attractive coupling can generate spikes under stimuli of subthreshold signals with disordered phases. In this paper, we explore the firing activity induced by phase disorder in excitable neuronal networks consisting of both attractive and repulsive coupling. By increasing the fraction of repulsive coupling, we find that, in the weak coupling strength case, the firing threshold of phase disorder is increased and the system response to subthreshold signals is decreased, indicating that the effect of inducing neuron firing by phase disorder is weakened with repulsive coupling. Interestingly, in the large coupling strength case, we see an opposite situation, where the coupled neurons show a rather large response to the subthreshold signals even with small phase disorder. The latter case implies that the effect of phase disorder is enhanced by repulsive coupling. A system of two-coupled excitable neurons is used to explain the role of repulsive coupling on phase-disorder-induced firing activity.