968 resultados para American film
Resumo:
In this study, we present a detailed structural characterization by means of transmission electron microscopy and Raman spectroscopy of polymorphous silicon (pm-Si:H) thin films deposited using radio-frequency dust-forming plasmas of SiH4 diluted in Ar. Square-wave modulation of the plasma and gas temperature was varied to obtain films with different nanostructures. Transmission electron microscopy and electron diffraction have shown the presence of Si crystallites of around 2 nm in the pm-Si:H films, which are related to the nanoparticles formed in the plasma gas phase coming from their different growth stages, named particle nucleation and coagulation. Raman scattering has proved the role of the film nanostructure in the crystallization process induced ¿in situ¿ by laser heating.
Resumo:
We report a systematic study of the low-temperature electrical conductivity in a series of SrRuO3 epitaxial thin films. At relatively high temperature the films display the conventional metallic behavior. However, a well-defined resistivity minimum appears at low temperature. This temperature dependence can be well described in a weak localization scenario: the resistivity minimum arising from the competition of electronic self-interference effects and the normal metallic character. By appropriate selection of the film growth conditions, we have been able to modify the mean-free path of itinerant carriers and thus to tune the relative strength of the quantum effects. We show that data can be quantitatively described by available theoretical models.
Resumo:
We report on the magneto-optical measurements of an epitaxial SrRuO3 film grown on SrTiO3 (0 0 1), which previously was determined to be single domain orientated by x-ray diffraction and Raman spectroscopy techniques. Our experiments reveal a large Kerr rotation, which reaches a maximum value of about 0.5° at low temperature. By measuring magnetic hysteresis loops at different temperatures, we determined the temperature dependence of the Kerr rotation in the polar configuration. Values of the anisotropic magnetoresistance ~ 20% have been measured. These values are remarkably higher than those of other metallic oxides such as manganites. This striking difference can be attributed to the strong spin-orbit interaction of the Ru 4d ion in the SrRuO3 compound.
Resumo:
We present an ellipsometric technique and ellipsometric analysis of repetitive phenomena, based on the experimental arrangement of conventional phase modulated ellipsometers (PME) c onceived to study fast surface phenomena in repetitive processes such as periodic and triggered experiments. Phase modulated ellipsometry is a highly sensitive surface characterization technique that is widely used in the real-time study of several processes such as thin film deposition and etching. However, fast transient phenomena cannot be analyzed with this technique because precision requirements limit the data acquisition rate to about 25 Hz. The presented new ellipsometric method allows the study of fast transient phenomena in repetitive processes with a time resolution that is mainly limited by the data acquisition system. As an example, we apply this new method to the study of surface changes during plasma enhanced chemical vapor deposition of amorphous silicon in a modulated radio frequency discharge of SiH4. This study has revealed the evolution of the optical parameters of the film on the millisecond scale during the plasma on and off periods. The presented ellipsometric method extends the capabilities of PME arrangements and permits the analysis of fast surface phenomena that conventional PME cannot achieve.
Resumo:
Highly transparent and stoichiometric boron nitride (BN) films were deposited on both electrodes (anode and cathode) of a radio-frequency parallel-plate plasma reactor by the glow discharge decomposition of two gas mixtures: B2H6-H2-NH3 and B2H6-N2. The chemical, optical, and structural properties of the films, as well as their stability under long exposition to humid atmosphere, were analyzed by x-ray photoelectron, infrared, and Raman spectroscopies; scanning and transmission electron microscopies; and optical transmittance spectrophotometry. It was found that the BN films grown on the anode using the B2H6-H2-NH3 mixture were smooth, dense, adhered well to substrates, and had a textured hexagonal structure with the basal planes perpendicular to the film surface. These films were chemically stable to moisture, even after an exposition period of two years. In contrast, the films grown on the anode from the B2H6-N2 mixture showed tensile stress failure and were very unstable in the presence of moisture. However, the films grown on the cathode from B2H6-H2-NH3 gases suffered from compressive stress failure on exposure to air; whereas with B2H6-N2 gases, adherent and stable cathodic BN films were obtained with the same crystallographic texture as anodic films prepared from the B2H6-H2-NH3 mixture. These results are discussed in terms of the origin of film stress, the effects of ion bombardment on the growing films, and the surface chemical effects of hydrogen atoms present in the gas discharge.
Resumo:
CuInSe2 thin films were deposited onto glass and liquid¿indium¿coated glass substrates by coevaporation of copper, indium, and selenium. The morphology, composition, and crystalline properties have been studied in relation to the deposition process parameters. The deposition rate and the grain size are higher in films grown on liquid indium than on glass and depend on the indium film thickness. Films grown on indium do not show the same crystalline phases of films grown on glass, and in order to obtain films free of spurious phases the Cu fluxes must be increased.
Resumo:
The substrate tuning technique was applied to a radio frequency magnetron sputtering system to obtain a variable substrate bias without an additional source. The dependence of the substrate bias on the value of the external impedance was studied for different values of chamber pressure, gas composition and rf input power. A qualitative explanation of the results is given, based on a simple model, and the role of the stray capacitance is clearly disclosed. Langmuir probe measurements show that this system allows independent control of the ion flux and the ion energy bombarding the growing film. For an argon flow rate of 2.8 sccm and a radio frequency power of 300 W (intermediate values of the range studied) the ion flux incident on the substrate was 1.3 X 1020-m-2-s-1. The maximum ion energy available in these conditions can be varied in the range 30-150 eV. As a practical application of the technique, BN thin films were deposited under different ion bombardment conditions. An ion energy threshold of about 80 eV was found, below which only the hexagonal phase was present in the films, while for higher energies both hexagonal and cubic phase were present. A cubic content of about 60% was found for an ion energy of 120 V.
Resumo:
The influence of radio frequency (rf) power and pressure on deposition rate and structural properties of hydrogenated amorphous silicon (a-Si:H) thin films, prepared by rf glow discharge decomposition of silane, have been studied by phase modulated ellipsometry and Fourier transform infrared spectroscopy. It has been found two pressure regions separated by a threshold value around 20 Pa where the deposition rate increases suddenly. This behavior is more marked as rf power rises and reflects the transition between two rf discharges regimes. The best quality films have been obtained at low pressure and at low rf power but with deposition rates below 0.2 nm/s. In the high pressure region, the enhancement of deposition rate as rf power increases first gives rise to a reduction of film density and an increase of content of hydrogen bonded in polyhydride form because of plasma polymerization reactions. Further rise of rf power leads to a decrease of polyhydride bonding and the material density remains unchanged, thus allowing the growth of a-Si:H films at deposition rates above 1 nm/s without any important detriment of material quality. This overcoming of deposition rate limitation has been ascribed to the beneficial effects of ion bombardment on the a-Si:H growing surface by enhancing the surface mobility of adsorbed reactive species and by eliminating hydrogen bonded in polyhydride configurations.
Resumo:
Two-sided flux decoration experiments indicate that threading dislocation lines (TDLs), which cross the entire film, are sometimes trapped in metastable states. We calculate the elastic energy associated with the meanderings of a TDL. The TDL behaves as an anisotropic and dispersive string with thermal fluctuations largely along its Burgers vector. These fluctuations also modify the structure factor of the vortex solid. Both effects can, in principle, be used to estimate the elastic moduli of the material.
Resumo:
Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, butterflies, etc. that can be found in Iowa.
Resumo:
We study the forced displacement of a thin film of fluid in contact with vertical and inclined substrates of different wetting properties, that range from hydrophilic to hydrophobic, using the lattice-Boltzmann method. We study the stability and pattern formation of the contact line in the hydrophilic and superhydrophobic regimes, which correspond to wedge-shaped and nose-shaped fronts, respectively. We find that contact lines are considerably more stable for hydrophilic substrates and small inclination angles. The qualitative behavior of the front in the linear regime remains independent of the wetting properties of the substrate as a single dispersion relation describes the stability of both wedges and noses. Nonlinear patterns show a clear dependence on wetting properties and substrate inclination angle. The effect is quantified in terms of the pattern growth rate, which vanishes for the sawtooth pattern and is finite for the finger pattern. Sawtooth shaped patterns are observed for hydrophilic substrates and low inclination angles, while finger-shaped patterns arise for hydrophobic substrates and large inclination angles. Finger dynamics show a transient in which neighboring fingers interact, followed by a steady state where each finger grows independently.
Resumo:
Amorphous thin films of Fe/Sm, prepared by evaporation methods, have been magnetically characterized and the results were interpreted in terms of the random magnets theory. The samples behave as 2D and 3D random magnets depending on the total thickness of the film. From our data the existence of orientational order, which greatly influences the magnetic behavior of the films, is also clear.
Resumo:
This essay focuses on how Spielberg's film engages with and contributes to the myth of Lincoln as a super-natural figure, a saint more than a hero or great statesman, while anchoring his moral authority in the sentimental rhetoric of the domestic sphere. It is this use of the melodramatic mode, linking the familial space with the national through the trope of the victim-hero, which is the essay's main concern. With Tony Kushner, author of Angels in America, as scriptwriter, it is perhaps not surprising that melodrama is the operative mode in the film. One of the issues that emerge from this analysis is how the film updates melodrama for a contemporary audience in order to minimize what could be perceived as manipulative sentimental devices, observing for most of the film an aesthetic of relative sobriety and realism. In the last hour, and especially the final minutes of the film, melodramatic conventions are deployed in full force and infused with hagiographic iconography to produce a series of emotionally charged moments that create a perfect union of American Civil Religion and classical melodrama. The cornerstone of both cultural paradigms, as deployed in this film, is death: Lincoln's at the hands of an assassin, and the Civil War soldiers', poignantly depicted at key moments of the film. Finally, the essay shows how film melodrama as a genre weaves together the private and the public, the domestic with the national, the familial with the military, and links pathos to politics in a carefully choreographed narrative of sentimentalized mythopoesis.