996 resultados para Absorption Measurements
Resumo:
Upconversion photoluminescence is a unique property of mostly certain inorganic materials, which are capable of converting low-energy infrared radiation into a higher-energy emission at visible wavelengths. This anti-Stokes shift enables luminescence detection without autofluorescence, which makes the upconverting materials a highly suitable reporter technology for optical biosensing applications. Furthermore, they exhibit long luminescence lifetime with narrow bandwidths also at the optical window of biomaterials enabling luminescence measurements in challenging sample matrices, such as whole blood. The aim of this thesis was to study the unique properties and the applicability of nano-sized upconverting phosphors (UCNPs) as reporters in biosensing applications. To render the inorganic nanophosphors water-dispersible and biocompatible, they were subjected to a series of surface modifications starting with silica-encapsulation and ending with a bioconjugation step with an analyte-recognizing biomolecule. The paramagnetism of the lanthanide dopants in the nanophosphors was exploited to develop a highly selective separation method for the UCNP-bioconjugates based on the magnetic selectivity of the high gradient magnetic separation (HGMS) system. The applicability of the nano-sized UCNPs as reporters in challenging sample matrices was demonstrated in two homogeneous sensing applications based on upconversion resonance energy transfer (UC-RET). A chemosensor for intracellular pH was developed exploiting UC-RET between the UCNP and a fluorogenic pH-sensitive dye with strongly increasing fluorescence intensity in decreasing pH. The pH-independent emission of the UCNPs at 550 nm was used for referencing. The applicability of the pH-nanosensor for intracellular pH measurement was tested in HeLa cells, and the acidic pH of endosomes could be detected with a confocal fluorescence microscope. Furthermore, a competitive UC-RET-based assay for red blood cell folic acid was developed for the measurement of folate directly from a whole blood sample. The optically transparent window of biomaterials was used in both the excitation and the measurement of the UC-RET sensitized emission of a near-infrared acceptor dye to minimize sample absorption, and the anti-Stokes detection completely eliminated the Stokes-shifted autofluorescence. The upconversion photoluminescence efficiency is known to be dependent on crystallite size, because the increasing surface-to-volume ratio of nano-sized UCNPs renders them more susceptible to quenching effects of the environment than their bulk counterpart. Water is known to efficiently quench the luminescence of lanthanide dopants. In this thesis, the quenching mechanism of water was studied using luminescence decay measurements. Water was found to quench the luminescence of UCNPs by increasing the non-radiative relaxation of the excited state of Yb3+ sensitizer ion, which had a very strong quenching effect on upconversion luminescence intensity.
Resumo:
The Graphite furnace atomic absorption spectrometry (GF AAS) was the technique chosen by the inorganic contamination laboratory (INCQ/ FIOCRUZ) to be validated and applied in routine analysis for arsenic detection and quantification. The selectivity, linearity, sensibility, detection, and quantification limits besides accuracy and precision parameters were studied and optimized under Stabilized Temperature Platform Furnace (STPF) conditions. The limit of detection obtained was 0.13 µg.L-1 and the limit of quantification was 1.04 µg.L-1, with an average precision, for total arsenic, less than 15% and an accuracy of 96%. To quantify the chemical species As(III) and As(V), an ion-exchange resin (Dowex 1X8, Cl- form) was used and the physical-chemical parameters were optimized resulting in a recuperation of 98% of As(III) and of 90% of As(V). The method was applied to groundwater, mineral water, and hemodialysis purified water samples. All results obtained were lower than the maximum limit values established by the legal Brazilian regulations, in effect, 50, 10, and 5 µg.L-1 para As total, As(III) e As(V), respectively. All results were statistically evaluated.
Resumo:
It is important to understand how changes in the product formulation can modify its characteristics. Thus, the objective of this study was to investigate the effect of whey protein concentrate (WPC) on the texture of fat-free dairy desserts. The correlation between instrumental and sensory measurements was also investigated. Four formulations were prepared with different WPC concentrations (0, 1.5, 3.0, and 4.5 wt. (%)) and were evaluated using the texture profile analysis (TPA) and rheology. Thickness was evaluated by nine trained panelists. Formulations containing WPC showed higher firmness, elasticity, chewiness, and gumminess and clearly differed from the control as indicated by principal component analysis (PCA). Flow behavior was characterized as time-dependent and pseudoplastic. Formulation with 4.5% WPC at 10 °C showed the highest thixotropic behavior. Experimental data were fitted to Herschel-Bulkley model. The addition of WPC contributed to the texture of the fat-free dairy dessert. The yield stress, apparent viscosity, and perceived thickness in the dairy desserts increased with WPC concentration. The presence of WPC promotes the formation of a stronger gel structure as a result of protein-protein interactions. The correlation between instrumental parameters and thickness provided practical results for food industries.
Resumo:
The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.
Resumo:
This study aimed at comparing both the results of wheat flour quality assessed by the new equipment Wheat Gluten Quality Analyser (WGQA) and those obtained by the extensigraph and farinograph. Fifty-nine wheat samples were evaluated for protein and gluten contents; the rheological properties of gluten and wheat flour were assessed using the WGQA and the extensigraph/farinograph methods, respectively, in addition to the baking test. Principal component analysis (PCA) and linear regression were used to evaluate the results. The parameters of energy and maximum resistance to extension determined by the extensigraph and WGQA showed an acceptable level for the linear correlation within the range from 0.6071 to 0.6511. The PCA results obtained using WGQA and the other rheological apparatus showed values similar to those expected for wheat flours in the baking test. Although all equipment used was effective in assessing the behavior of strong and weak flours, the results of medium strength wheat flour varied. WGQA has shown to use less amount of sample and to be faster and easier to use in relation to the other instruments used.
Resumo:
The two central goals of this master's thesis are to serve as a guidebook on the determination of uncertainty in efficiency measurements and to investigate sources of uncertainty in efficiency measurements in the field of electric drives by a literature review, mathematical modeling and experimental means. The influence of individual sources of uncertainty on the total instrumental uncertainty is investigated with the help of mathematical models derived for a balance and a direct air cooled calorimeter. The losses of a frequency converter and an induction motor are measured with the input-output method and a balance calorimeter at 50 and 100 % loads. A software linking features of Matlab and Excel is created to process measurement data, calculate uncertainties and to calculate and visualize results. The uncertainties are combined with both the worst case and the realistic perturbation method and distributions of uncertainty by source are shown based on experimental results. A comparison of the calculated uncertainties suggests that the balance calorimeter determines losses more accurately than the input-output method with a relative RPM uncertainty of 1.46 % compared to 3.78 - 12.74 % respectively with 95 % level of confidence at the 93 % induction motor efficiency or higher. As some principles in uncertainty analysis are open to interpretation the views and decisions of the analyst can have noticeable influence on the uncertainty in the measurement result.
Resumo:
Optimization of quantum measurement processes has a pivotal role in carrying out better, more accurate or less disrupting, measurements and experiments on a quantum system. Especially, convex optimization, i.e., identifying the extreme points of the convex sets and subsets of quantum measuring devices plays an important part in quantum optimization since the typical figures of merit for measuring processes are affine functionals. In this thesis, we discuss results determining the extreme quantum devices and their relevance, e.g., in quantum-compatibility-related questions. Especially, we see that a compatible device pair where one device is extreme can be joined into a single apparatus essentially in a unique way. Moreover, we show that the question whether a pair of quantum observables can be measured jointly can often be formulated in a weaker form when some of the observables involved are extreme. Another major line of research treated in this thesis deals with convex analysis of special restricted quantum device sets, covariance structures or, in particular, generalized imprimitivity systems. Some results on the structure ofcovariant observables and instruments are listed as well as results identifying the extreme points of covariance structures in quantum theory. As a special case study, not published anywhere before, we study the structure of Euclidean-covariant localization observables for spin-0-particles. We also discuss the general form of Weyl-covariant phase-space instruments. Finally, certain optimality measures originating from convex geometry are introduced for quantum devices, namely, boundariness measuring how ‘close’ to the algebraic boundary of the device set a quantum apparatus is and the robustness of incompatibility quantifying the level of incompatibility for a quantum device pair by measuring the highest amount of noise the pair tolerates without becoming compatible. Boundariness is further associated to minimum-error discrimination of quantum devices, and robustness of incompatibility is shown to behave monotonically under certain compatibility-non-decreasing operations. Moreover, the value of robustness of incompatibility is given for a few special device pairs.
Resumo:
The focus of the work reported in this thesis was to study and to clarify the effect of polyelectrolyte multilayer surface treatment on inkjet ink spreading, absorption and print quality. Surface sizing with a size press, film press with a pilot scale coater, and spray coating, have been used to surface treat uncoated wood-free, experimental wood-free and pigmentcoated substrates. The role of the deposited cationic (polydiallydimethylammonium chloride, PDADMAC) and anionic (sodium carboxymethyl cellulose, NaCMC) polyelectrolyte layers with and without nanosilica, on liquid absorption and spreading was studied in terms of their interaction with water-based pigmented and dye-based inkjet inks. Contact angle measurements were made in attempt to explain the ink spreading and wetting behavior on the substrate. First, it was noticed that multilayer surface treatment decreased the contact angle of water, giving a hydrophilic character to the surface. The results showed that the number of cationic-anionic polyelectrolyte layers or the order of deposition of the polyelectrolytes had a significant effect on the print quality. This was seen for example as a higher print density on layers with a cationic polyelectrolyte in the outermost layer. The number of layers had an influence on the print quality; the print density increased with increasing number of layers, although the increase was strongly dependent on ink formulation and chemistry. The use of nanosilica clearly affected the rate of absorption of polar liquids, which also was seen as a higher density of the black dye-based print. Slightly unexpected, the use of nanosilica increased the tendency for lateral spreading of both the pigmented and dye-based inks. It was shown that the wetting behavior and wicking of the inks on the polyelectrolyte coatings was strongly affected by the hydrophobicity of the substrate, as well as by the composition or structure of the polyelectrolyte layers. Coating only with a cationic polyelectrolyte was not sufficient to improve dye fixation, but it was demonstrated that a cationic-anionic-complex structure led to good water fastness. A threelayered structure gave the same water fastness values as a five-layered structure. Interestingly, the water fastness values were strongly dependent not only on the formed cation-anion polyelectrolyte complexes but also on the tendency of the coating to dissolve during immersion in water. Results showed that by optimizing the chemistry of the layers, the ink-substrate interaction can be optimized.
Resumo:
Preventive maintenance of frequency converters has been based on pre-planned replace-ment of wearing or ageing components. Exchange intervals follow component life-time expectations which are based on empirical knowledge or schedules defined by manufac-turer. However, the lifetime of a component can vary significantly, because drives are used in very different operating environments and applications. The main objective of the research was to provide information on methods, i.e. how in-verter's operating condition can be measured reliably under field conditions. At first, the research focused on critical components such as current transducers, IGBTs and DC link capacitor bank, because these aging have already been identified. Of these, the DC link capacitor measurement method was selected for closer examination. With this method, the total capacitance and its total series resistance can be measured. The suitability of the measuring procedure was estimated on the basis of practical measurements. The research was made by using so called triangulation method, including a literature review, simulations and practical measurements. Based on the results, the new measu-rement method seems suitable with some reservations to practical measurements. How-ever, the measuring method should be further developed in order to improve its reliability.
Resumo:
I organiska halvledare påverkas mängden laddningsbärare kraftigt av indirekt rekombination, det vill säga processen då fria laddningsbärare försvinner genom att kombineras med orörliga laddningsbärare av motsatt laddning. De orörliga laddningsbärarna uppstår när laddningsbärare fastnar i fällor, som är energitillstånd med låg energi och densitet. Utöver indirekt rekombination sker även direkt rekombination mellan fria laddningsbärare. Då man tillverkar solceller av organiska halvledare påverkas effektiviteten av energidistributionen och rekombinationsprocesserna i materialen. Utveckling av olika metoder för undersökning av dessa egenskaper är således till nytta i jakten på bättre solcellsmaterial. Målet med detta arbete var att vidareutveckla dataanalysen för cwPA-mätningar(från engelska continuous-wave Photoinduced Absorption) för att ur resultaten få information om indirekt rekombination och fälldistributioner. I cwPA-mätningar studerar man fotoinducerad absorption, det vill säga förändringen i absorption hos ett prov då densiteten av fotogenererade laddningsbärare varierar. Laddningsbärarna genereras av ett pumpljus vars intensitet ges av en fyrkantsvåg som växlar mellan 0 och I med vinkelfrekvensen omega. Resultaten fås i form av i-fas-signal (PAI), som har samma frekvens och fas som pumpljuset, och kvadratur (PAQ), som har samma frekvens som pumpljuset men är fasförskjuten 90 grader. Fördelen med denna mätning är förutom känsligheten att den är kontaktlös, vilket gör att den visar egenskaperna hos det undersökta materialet utan att påverkas av elektriska kontakter. För att undersöka inverkan av indirekt rekombination på cwPA-mätningar simulerades mätresultat genom att använda numeriska beräkningar. Grunden för simuleringarna var att lösa differentialekvationer för densiteter av laddningsbärare i olika tillstånd. Beräkningarna använde en modell med transporttillstånd och fällor placerade så att energidistributionen var symmetrisk för elektroner och hål. Modellen antog att laddningsbärare inte kunde röra sig direkt mellan fällor utan endast via transporttillstånd. Från simuleringarna erhölls användbara samband mellan fotoinducerad absorption och olika fälldistributioner. Särskilt påverkade distributionerna i-fas-signalen för hög intensitet på pumpljuset och kvadraturen för låg frekvens på fyrkantsvågen. För en exponentiell fälldistribution hittades samband mellan mätresultat och distributionens karakteristiska energi (Ech) i förhållande till temperaturen (T). Dessa är för hög intensitet PAI~I^(1+Ech/kT) och för låg frekvens PAQ~omega^(kT/Ech). Resultaten visade att man kan skilja på en exponentiell fälldistribution, en gaussisk fälldistribution och ett system som domineras av direkt rekombination genom att göra cwPA-mätningar vid olika temperaturer.
Resumo:
The thesis focuses on light water reactors (pressurized water reactors, boiling water reactors) and measurement techniques for basic thermal hydraulics parameters that are used in a nuclear power plant. The goal of this work is a development of laboratory exercises for basic nuclear thermal hydraulics measurements.
Resumo:
The underwater light field is an important environmental variable as it, among other things, enables aquatic primary production. Although the portion of solar radiation that is referred to as visible light penetrates water, it is restricted to a limited surface water layer because of efficient absorption and scattering processes. Based on the varying content of optical constituents in the water, the efficiency of light attenuation changes in many dimensions and over various spatial and temporal scales. This thesis discusses the underwater light dynamics of a transitional coastal archipelago in south-western Finland, in the Baltic Sea. While the area has long been known to have a highly variable underwater light field, quantified knowledge on the phenomenon has been scarce, patchy, or non-existent. This thesis focuses on the variability in the underwater light field through euphotic depths (1% irradiance remaining), which were derived from in situ measurements of vertical profiles of photosynthetically active radiation (PAR). Spot samples were conducted in the archipelago of south-western Finland, mainly during the ice-free growing seasons of 2010 and 2011. In addition to quantifying both the seasonal and geographical patterns of euphotic depth development, the need and usability of underwater light information are also discussed. Light availability was found to fluctuate in multiple dimensions and scales. The euphotic depth was shown to have combined spatio-temporal dynamics rather than separate changes in spatial and temporal dimensions. Such complexity in the underwater light field creates challenges in data collection, as well as in its utilisation. Although local information is needed, in highly variable conditions spot sampled information may only poorly represent its surroundings. Moreover, either temporally or spatially limited sampling may cause biases in understanding underwater light dynamics. Consequently, the application of light availability data, for example in ecological modelling, should be made with great caution.