939 resultados para 130300 SPECIALIST STUDIES IN EDUCATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antinociceptive properties of oxycodone and its metabolites were studied in models of thermal and mechanical nociception and in the spinal nerve ligation (SNL) model of neuropathic pain in rats. Oxycodone induced potent antinociception after subcutaneous (s.c.) administration in all models of nociception used in rats compared with morphine, methadone and its enantiomers. In the SNL model of neuropathic pain in rats, oxycodone produced dose dependent antinociception after s.c. administration. The antinociceptive effects of s.c. oxycodone were antagonized by naloxone but not by nor-binaltorphimine (Nor-BNI) a selective κ-opioid receptor antagonist indicating that the antinociceptive properties of oxycodone are predominantly μ-opioid receptor-mediated. The antinociceptive activity of oxymorphone, noroxycodone, and noroxymorphone, oxidative metabolites of oxycodone, were studied to determine their role in the oxycodone-induced antinociception in the rat. Of the metabolites of oxycodone s.c. administration of oxymorphone produced potent thermal and mechanical antinociception. Noroxycodone had a poor antinociceptive effect and noroxymorphone was inactive. Oxycodone produced naloxone-reversible antinociception after intrathecal (i.t) administration with a poor potency compared with morphine and oxymorphone. This seems to be related to the low efficacy and potency of oxycodone to stimulate μ-opioid receptor activation in the spinal cord in μ-opioid receptor agonist-stimulated (GTP)γ[S] autoradiography, compared with morphine and oxymorphone. All metabolites studied were more potent than oxycodone after i.t. administration. I.t. noroxymorphone induced a significantly longer lasting antinociceptive effect compared with the other drugs studied. The role of cytochrome P450 (CYP) 2D6-mediated metabolites on the analgesic activity of oxycodone in humans was studied by blocking the CYP2D6-mediated metabolism of oxycodone with paroxetine. Paroxetine co-administration had no effect on the analgesic effect of oxycodone compared with placebo in chronic pain patients, indicating that oxycodone-induced analgesia and adverse-effects are not dependent of the CYP2D6-mediated metabolism in humans. Although oxycodone has many pharmacologically active metabolites, they seem to have an insignificant role in oxycodone-induced antinociception in humans and rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclosporine-A (CsA) is widely used after organ transplantation to prevent rejection and in the treatment of autoimmune diseases. Hypertension and nephrotoxicity are common side-effects of CsA. Studies in patients on the prevention of the side-effects of CsA are difficult to conduct because the patients often receive a combination of different drugs thus making study of the side-effects of a single drug impossible. A challenge in experimental studies has been the lack of an animal model in which the side-effects concomitantly occur. Epidemiological data show an association between sodium (Na) intake and blood pressure. There is also evidence on low dietary intake of magnesium (Mg) and potassium (K) and high blood pressure. Our study was designed to develop an experimental model to study the side-effects of CsA in spontaneously hypertensive rats (SHR). On high dietary sodium, CsA caused hypertension, left ventricular hypertrophy (LVH), narrowing of the coronary arteries, small myocardial infarctions, and proteinuria, reduced creatinine clearance and histopathological renal injury in SHR. Loss of Mg into the urine caused by CsA resulted in Mg depletion in the tissues. Renal excretion of dopamine was reduced and the renin-angiotensin-aldosterone system was activated. We investigated the effects of dietary Mg and/or K and the calcium antagonist drug, isradipine, on the prevention of CsA toxicity. Dietary supplementation of Mg alone or in combination with K prevented from the deleterious pathophysiological and histopathological changes in the kidneys and the heart. K alone had little effect. Isradipine protected better than Mg from LVH, but the combination of isradipine and Mg was the most effective. Isradipine did not, however, protect against Mg loss. In our animal model, the combination of high dietary Na and treatment with CsA accelerated the development of the cardiovascular and renal changes clinically known as the side-effects of CsA. Dietary supplementation of Mg and K and reduction of Na intake and the calcium antagonist drug isradipine prevent from the deleterious effects of CsA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature variation of the 3’Cl n.q.r. frequencies in 3,5- and 2,3- dichloroanisoles has been reported here. Both compounds show two lines each, and these have been assigned to the two chlorines in the same molecule with the help of the additive model for the substituent effect. The temperature dependence has been analysed in terms of Bayer-Kushida-Brown model.The torsional frequencies and their temperature dependence have been calculated numerically under a two-mode approximation. 0.n comparing the results in 3,5-dichloroanisole with those in 3,5-dichlorophenol it can be seen that they show similar behaviour owing to the absence of hydrogen bonding in both.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soils represent a remarkable stock of carbon, and forest soils are estimated to hold half of the global stock of soil carbon. Topical concern about the effects of climate change and forest management on soil carbon as well as practical reporting requirements set by climate conventions have created a need to assess soil carbon stock changes reliably and transparently. The large spatial variability of soil carbon commensurate with relatively slow changes in stocks hinders the assessment of soil carbon stocks and their changes by direct measurements. Models therefore widely serve to estimate carbon stocks and stock changes in soils. This dissertation aimed to develop the soil carbon model YASSO for upland forest soils. The model was aimed to take into account the most important processes controlling the decomposition in soils, yet remain simple enough to ensure its practical applicability in different applications. The model structure and assumptions were presented and the model parameters were defined with empirical measurements. The model was evaluated by studying the sensitivities of the model results to parameter values, by estimating the precision of the results with an uncertainty analysis, and by assessing the accuracy of the model by comparing the predictions against measured data and to the results of an alternative model. The model was applied to study the effects of intensified biomass extraction on the forest carbon balance and to estimate the effects of soil carbon deficit on net greenhouse gas emissions of energy use of forest residues. The model was also applied in an inventory based method to assess the national scale forest carbon balance for Finland’s forests from 1922 to 2004. YASSO managed to describe sufficiently the effects of both the variable litter and climatic conditions on decomposition. When combined with the stand models or other systems providing litter information, the dynamic approach of the model proved to be powerful for estimating changes in soil carbon stocks on different scales. The climate dependency of the model, the effects of nitrogen on decomposition and forest growth as well as the effects of soil texture on soil carbon stock dynamics are areas for development when considering the applicability of the model to different research questions, different land use types and wider geographic regions. Intensified biomass extraction affects soil carbon stocks, and these changes in stocks should be taken into account when considering the net effects of forest residue utilisation as energy. On a national scale, soil carbon stocks play an important role in forest carbon balances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of Lorentz and Doppler line-broadening mechanisms on the small-signal optical gain of lasers and, in particular, gasdynamic lasers, is discussed. A relationship between the critical parameter reflecting the line-broadening mechanisms and some of the important parameters arising out of the gain optimization studies in CO2-N2 gasdynamic lasers is established. Using this relationship, methods by which the deleterious effect of the Doppler mechanisms on small-signal gain can be suppressed are suggested. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calonectria ilicicola, Gliocladiopsis sp. and Ilyonectria liriodendri were isolated from diseased roots of young avocado trees. Pathogenicity studies with seedlings of three avocado cultivars, Velvick, Hass and Reed, demonstrated that Calonectria ilicicola is a severe root rot pathogen, reducing the biomass of healthy roots, and reducing plant height over time. Calonectria ilicicola was re-isolated from diseased roots. Ilyonectria liriodendri and Gliocladiopsis sp. were not pathogenic and plant height was increased after Gliocladiopsis sp. amendment compared to all other treatments in trials with cvs Velvick and Hass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Birch reduction and reductive methylations of the title compounds have been investigated. 7-Methoxy-3,4-dihydrophenanthren-1(2H)-one (2) yields the cis-3,4,9,10,11,12-hexahydro-derivative (15) while the 7-methoxy-1,2-dihydrophenanthren-4(3H)-one (5) is reduced to the corresponding 1,2,9,10-tetrahydro-derivative (7). The factors influencing the mechanism of the reduction process have been discussed. The reductive methylation products of the ketone (2) are useful substrates in the synthesis of 9-methyl steroids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro_(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro_(L)Pro_(L)Phe-OMe (2), and Piv-(D)Pro_(L)Pro_(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The C-13 spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C-beta and C-gamma carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all transform across the di-Proline segment. The results are In agreement with the X-ray analysis. Solid state N-15 resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. H-1 chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between H-1-C-13. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (C) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.