889 resultados para graphene oxide
Resumo:
Pathogenic mycobacteria employ several immune evasion strategies such as inhibition of class II transactivator (CIITA) and MHC-II expression, to survive and persist in host macrophages. However, precise roles for specific signaling components executing down-regulation of CIITA/MHC-II have not been adequately addressed. Here, we demonstrate that Mycobacterium bovis bacillus Calmette-Guerin (BCG)-mediated TLR2 signaling-induced iNOS/NO expression is obligatory for the suppression of IFN-gamma-induced CIITA/MHC-II functions. Significantly, NOTCH/PKC/MAPK-triggered signaling cross-talk was found critical for iNOS/NO production. NO responsive recruitment of a bifunctional transcription factor, KLF4, to the promoter of CIITA during M. bovis BCG infection of macrophages was essential to orchestrate the epigenetic modifications mediated by histone methyltransferase EZH2 or miR-150 and thus calibrate CIITA/MHC-II expression. NO-dependent KLF4 regulated the processing and presentation of ovalbumin by infected macrophages to reactive T cells. Altogether, our study delineates a novel role for iNOS/NO/KLF4 in dictating the mycobacterial capacity to inhibit CIITA/MHC-II-mediated antigen presentation by infected macrophages and thereby elude immune surveillance.
Comparison of ZnO films deposited on indium tin oxide and soda lime glass under identical conditions
Resumo:
ZnO films have been grown via a vapour phase transport (VPT) on soda lime glass (SLG) and indium-tin oxide (ITO) coated glass. ZnO film on ITO had traces of Zn and C which gives them a dark appearance while that appears yellowish-white on SLG. X-ray photoelectron spectroscopy studies confirm the traces of C in the form of C-O. The photoluminescence studies reveal a prominent green luminescence band for ZnO film on ITO. (C) 2013 Author(s).
Resumo:
In this paper, we address a physics-based analytical model of electric-field-dependent electron mobility (mu) in a single-layer graphene sheet using the formulation of Landauer and Mc Kelvey's carrier flux approach under finite temperature and quasi-ballistic regime. The energy-dependent, near-elastic scattering rate of in-plane and out-of-plane (flexural) phonons with the electrons are considered to estimate mu over a wide range of temperature. We also demonstrate the variation of mu with carrier concentration as well as the longitudinal electric field. We find that at high electric field (>10(6) Vm(-1)), the mobility falls sharply, exhibiting the scattering between the electrons and flexural phonons. We also note here that under quasi-ballistic transport, the mobility tends to a constant value at low temperature, rather than in between T-2 and T-1 in strongly diffusive regime. Our analytical results agree well with the available experimental data, while the methodologies are put forward to estimate the other carrier-transmission-dependent transport properties.
Resumo:
In this paper, we analyze the combined effects of size quantization and device temperature variations (T = 50K to 400 K) on the intrinsic carrier concentration (n(i)), electron concentration (n) and thereby on the threshold voltage (V-th) for thin silicon film (t(si) = 1 nm to 10 nm) based fully-depleted Double-Gate Silicon-on-Insulator MOSFETs. The threshold voltage (V-th) is defined as the gate voltage (V-g) at which the potential at the center of the channel (Phi(c)) begins to saturate (Phi(c) = Phi(c(sat))). It is shown that in the strong quantum confinement regime (t(si) <= 3nm), the effects of size quantization far over-ride the effects of temperature variations on the total change in band-gap (Delta E-g(eff)), intrinsic carrier concentration (n(i)), electron concentration (n), Phi(c(sat)) and the threshold voltage (V-th). On the other hand, for t(si) >= 4 nm, it is shown that size quantization effects recede with increasing t(si), while the effects of temperature variations become increasingly significant. Through detailed analysis, a physical model for the threshold voltage is presented both for the undoped and doped cases valid over a wide-range of device temperatures, silicon film thicknesses and substrate doping densities. Both in the undoped and doped cases, it is shown that the threshold voltage strongly depends on the channel charge density and that it is independent of incomplete ionization effects, at lower device temperatures. The results are compared with the published work available in literature, and it is shown that the present approach incorporates quantization and temperature effects over the entire temperature range. We also present an analytical model for V-th as a function of device temperature (T). (C) 2013 AIP Publishing LLC.
Resumo:
Composites of graphene involving chemically bonded nano films of metal oxides have been prepared by reacting graphene containing surface oxygen functionalities with metal halide vapours followed by exposure to water vapour. The composites have been characterized by electron microscopy, atomic force microscopy and other techniques. Magnetite particles chemically bonded to graphene dispersible in various solvents have been prepared and they exhibit fairly high magnetization.
Resumo:
We investigate the effect of nitrogen and boron doping on Li diffusion through defected graphene using first principles based density functional theory. While a high energy barrier rules out the possibility of Li-diffusion through the pristine graphene, the barrier reduces with the incorporation of defects. Among the most common defects in pristine graphene, Li diffusion through the divacancy encounters the lowest energy barrier of 1.34 eV. The effect of nitrogen and boron doping on the Li diffusion through doped defected-graphene sheets has been studied. N-doping in graphene with a monovacancy reduces the energy barrier significantly. The barrier reduces with the increasing number of N atoms. On the other hand, for N doped graphene with a divacancy, Li binds in the plane of the sheet, with an enhanced binding energy. The B doping in graphene with a monovacancy leads to the enhancement of the barrier. However, in the case of B-doped graphene with a divacancy, the barrier reduces to 1.54 eV, which could lead to good kinetics. The barriers do not change significantly with B concentration. Therefore, divacancy, B and N doped defected graphene has emerged as a better alternative to pristine graphene as an anode material for Li ion battery.
Resumo:
Hafnium dioxide (HfO2) films, deposited using electron beam evaporation, are optimized for high performance back-gated graphene transistors. Bilayer graphene is identified on HfO2/Si substrate using optical microscope and subsequently confirmed with Raman spectroscopy. Back-gated graphene transistor, with 32 nm thick HfO2 gate dielectric, has been fabricated with very high transconductance value of 60 mu S. From the hysteresis of the current-voltage characteristics, we estimate the trap density in HfO2 to be in the mid 10(11)/cm(2) range, comparable to SiO2.
Resumo:
We investigate the gate-controlled direct band-to-band tunneling (BTBT) current in a graphene-boron nitride (G-BN) heterobilayer channel-based tunnel field effect transistor. We first study the imaginary band structure of hexagonal and Bernal-stacked heterobilayers by density functional theory, which is then used to evaluate the gate-controlled current under the Wentzel-Kramers-Brillouin approximation. It is shown that the direct BTBT is probable for a certain interlayer spacing of the G-BN which depends on the stacking orders.
Resumo:
We address a physics-based solution of joule heating phenomenon in a single-layer graphene (SLG) sheet under the presence of Thomson effect. We demonstrate that the temperature in an isotopically pure (containing only C-12) SLG sheet attains its saturation level quicker than when doped with its isotopes (C-13). From the solution of the joule heating equation, we find that the thermal time constant of the SLG sheet is in the order of tenths of a nanosecond for SLG dimensions of a few micrometers. These results have been formulated using the electron interactions with the inplane and flexural phonons to demonstrate a field-dependent Landauer transmission coefficient. We further develop an analytical model of the SLG specific heat using the quadratic (out of plane) phonon band structure over the room temperature. Additionally, we show that a cooling effect in the SLG sheet can be substantially enhanced with the addition of C-13. The methodologies as discussed in this paper can be put forward to analyze the graphene heat spreader theory.
Resumo:
Ti0.97Pt0.032+O1.97 and Ti0.97Pt0.034+O2 have been synthesized by a solution combustion method using alanine and glycine as the fuels, respectively. Both crystallize in anatase TiO2 structure with 15 nm average crystallite size. X-ray photoelectron spectroscopy (XPS) confirmed Pt ions are in the 2+ state in Ti0.97Pt0.03O1.97 (alanine) and 4+ state in Ti0.97Pt0.03O2 (glycine). The rate of CO oxidation occurring over Ti0.97Pt0.032+O1.97 (0.76 mu mol.g(-1).s(-1)) is similar to 10, times more than that over Ti0.97Pt0.034+O2 at 60 degrees C (0.08 mu mol.g(-1).s(-1)). A large shift in 100% hydrocarbons conversion to lower temperature was observed for Pt2+ ion-substituted TiO2 relative 10 that for Pt4+ ion-substituted TiO2. After reoxidation of the reduced compound by H-2 as well as CO, Pt ions are stabilized in mixed valences, 2+ and 4+ states. The role of oxide ion vacancy has been demonstrated by CO oxidation and H-2 + O-2 recombination reactions in the presence and absence of O-2. We analyze the activated lattice oxygens upon substitution of Pt2+ and Pt4+ ions in TiO2, using first-principles density functional theory (DFT) calculations with supercells of Ti31Pt1O63, Ti30Pt2O62, and Ti29Pt3O61 for Pt2+ ion substitution and Ti31Pt1O64, Ti30Pt2O62, and Ti29Pt3O61 for Pt4+ ion substitution in TiO2. We find that the local structure of Pt2+ ion has a distorted square planar geometry and that of Pt4+ ion has an octahedral geometry similar to that of Ti4+ ion in pure TiO2. The change in coordination of Pt2+ ion gives rise to weakly bonded oxygens, and these oxygens are involved in high rates of catalytic reaction. Thus, the high catalytic activity results from synergistic roles of Pt2+ ion and oxide ion vacancy and weakly bonded lattice oxygen.
Resumo:
A low cost, reagent free, Escherichia coli sensor is demonstrated with graphene, on transparent flexible acetate substrate. Graphene is grown on 100 mu m thick Cu foil, using CVD process and subsequently transferred on to a flexible acetate substrate. Gold electrodes are deposited on graphene to form a two terminal, interdigitated capacitor structure. Impedance spectroscopy (10 Hz to 100 kHz) is performed to characterize the change in impedance, as a function of E. coli concentration on graphene surface. The residual methyl groups on graphene, resulting from the transfer process, act as binding sites for E. coli. It has been observed that the resistance of graphene decreases with increasing E. coli concentration. This is due to the increased hole doping induced by negatively charged E. coli. A sensitivity of 60% is achieved for an E. coli concentration of 4.5 x 10(7) cfu/ml. An equivalent RC model is proposed to explain the sensing mechanism. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Combining the electronic properties of graphene(1,2) and molybdenum disulphide (MoS2)(3-6) in hybrid heterostructures offers the possibility to create devices with various functionalities. Electronic logic and memory devices have already been constructed from graphene-MoS2 hybrids(7,8), but they do not make use of the photosensitivity of MoS2, which arises from its optical-range bandgap(9). Here, we demonstrate that graphene-on-MoS2 binary heterostructures display remarkable dual optoelectronic functionality, including highly sensitive photodetection and gate-tunable persistent photoconductivity. The responsivity of the hybrids was found to be nearly 1 x 10(10) A W-1 at 130 K and 5 x 10(8) A W-1 at room temperature, making them the most sensitive graphene-based photodetectors. When subjected to time-dependent photoillumination, the hybrids could also function as a rewritable optoelectronic switch or memory, where the persistent state shows almost no relaxation or decay within experimental timescales, indicating near-perfect charge retention. These effects can be quantitatively explained by gate-tunable charge exchange between the graphene and MoS2 layers, and may lead to new graphene-based optoelectronic devices that are naturally scalable for large-area applications at room temperature.
Resumo:
We report large scale deposition of tapered zinc oxide (ZnO) nanorods on Si(100) substrate by using newly designed metal-organic complex of zinc (Zn) as the precursor, and microwave irradiation assisted chemical synthesis as a process. The coatings are uniform and high density ZnO nanorods (similar to 1.5 mu m length) grow over the entire area (625 mm(2)) of the substrate within 1-5 min of microwave irradiation. ZnO coatings obtained by solution phase deposition yield strong UV emission. Variation of the molecular structure/molecular weight of the precursors and surfactants influence the crystallinity, morphology, and optical properties of ZnO coatings. The precursors in addition with the surfactant and the solvent are widely used to obtain desired coating on any substrate. The growth mechanism and the schematics of the growth process of ZnO coatings on Si(100) are discussed. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this work, we present a study on the negative differential resistance (NDR) behavior and the impact of various deformations (like ripple, twist, wrap) and defects like vacancies and edge roughness on the electronic properties of short-channel MoS2 armchair nanoribbon MOSFETs. The effect of deformation (3 degrees-7 degrees twist or wrap and 0.3-0.7 angstrom ripple amplitude) and defects on a 10 nm MoS2 ANR FET is evaluated by the density functional tight binding theory and the non-equilibrium Green's function approach. We study the channel density of states, transmission spectra, and the I-D-V-D characteristics of such devices under the varying conditions, with focus on the NDR behavior. Our results show significant change in the NDR peak to valley ratio and the NDR window with such minor intrinsic deformations, especially with the ripple. (C) 2013 AIP Publishing LLC.
Resumo:
The ethanol sensing properties of porous Cr2O3 thin films deposited by the ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture is reported. The impact of the precursor selection and various deposition parameters on the film crystallinity, surface morphology and stoichiometry are studied using thermo-gravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy techniques. The film morphology exhibits a highly porous nature, as a result of the exothermic combustion reaction during film deposition. The gas sensing properties of these films are investigated in the temperature range of 200-375 degrees C for ethanol. The films show two different regions of response for ethanol above and below 300 degrees C. A good relationship between the response and the ethanol concentration is observed, and is modeled using an empirical relation. The possible mechanism and the surface chemical reactions of ethanol over the chromium oxide surface are discussed.