879 resultados para Word segmentation
Resumo:
This article analyzes the solutions given in Spanish translations to the morphological creativity shown in the names of Marvel comic book characters. The English versions almost invariably provide a full description of the hero (or villain) by means of a wide variety of word-formation mechanisms leading to highly expressive charactonyms. Indeed, examples shall be listed of names of comic book heroes created through compounding, derivation, including prefixation or suffixation (both classical and Anglo-Saxon but also from other origins), lexical blending, abbreviation, clipping, onomatopoeia, and borrowings from Spanish or from other languages. Early translations into Spanish seemed to be slightly less expressive than the original, even when the same word-formation mechanism was used, usually due to either problems of transparency mainly in some of the word parts or to translation constraints. In later periods, a number of factors, including the influence from other media featuring the same characters and the general trend towards globalization through English, have led translators to choose repetition as the most frequent strategy, which has almost eliminated the creative power of wordformation mechanisms in Spanish and their ability to convey the stylistic effects found in the English versions.
Awareness of L1 and L2 word-formation mechanisms for the development of a more autonomous L2 learner
Resumo:
Unlike traditional approaches, new communicative trends disregard the role of word-formation mechanisms. They tend to focus on syntax and/or vocabulary without analyzing the mechanisms involved in the creation of lexical items. In this paper, based on the analysis of the use of prefixes by L2 learners in oral and written productions, as provided by the SULEC, we emphasize the advantages that word-formation awareness and knowledge may have for the learners in terms of production, creativity, understanding, autonomy, and proficiency. Through the teaching of word-formation learners may more easily decipher, decode and/or encode messages, create words they have never seen before, etc.
Resumo:
We present new tools for the segmentation and analysis of musical scores in the OpenMusic computer-aided composition environment. A modular object-oriented framework enables the creation of segmentations on score objects and the implementation of automatic or semi-automatic analysis processes. The analyses can be performed and displayed thanks to customizable classes and callbacks. Concrete examples are given, in particular with the implementation of a semi-automatic harmonic analysis system and a framework for rhythmic transcription.
Resumo:
En este trabajo se presenta un método para la detección de subjetividad a nivel de oraciones basado en la desambiguación subjetiva del sentido de las palabras. Para ello se extiende un método de desambiguación semántica basado en agrupamiento de sentidos para determinar cuándo las palabras dentro de la oración están siendo utilizadas de forma subjetiva u objetiva. En nuestra propuesta se utilizan recursos semánticos anotados con valores de polaridad y emociones para determinar cuándo un sentido de una palabra puede ser considerado subjetivo u objetivo. Se presenta un estudio experimental sobre la detección de subjetividad en oraciones, en el cual se consideran las colecciones del corpus MPQA y Movie Review Dataset, así como los recursos semánticos SentiWordNet, Micro-WNOp y WordNet-Affect. Los resultados obtenidos muestran que nuestra propuesta contribuye de manera significativa en la detección de subjetividad.
Resumo:
Abdominal Aortic Aneurism is a disease related to a weakening in the aortic wall that can cause a break in the aorta and the death. The detection of an unusual dilatation of a section of the aorta is an indicative of this disease. However, it is difficult to diagnose because it is necessary image diagnosis using computed tomography or magnetic resonance. An automatic diagnosis system would allow to analyze abdominal magnetic resonance images and to warn doctors if any anomaly is detected. We focus our research in magnetic resonance images because of the absence of ionizing radiation. Although there are proposals to identify this disease in magnetic resonance images, they need an intervention from clinicians to be precise and some of them are computationally hard. In this paper we develop a novel approach to analyze magnetic resonance abdominal images and detect the lumen and the aortic wall. The method combines different algorithms in two stages to improve the detection and the segmentation so it can be applied to similar problems with other type of images or structures. In a first stage, we use a spatial fuzzy C-means algorithm with morphological image analysis to detect and segment the lumen; and subsequently, in a second stage, we apply a graph cut algorithm to segment the aortic wall. The obtained results in the analyzed images are pretty successful obtaining an average of 79% of overlapping between the automatic segmentation provided by our method and the aortic wall identified by a medical specialist. The main impact of the proposed method is that it works in a completely automatic way with a low computational cost, which is of great significance for any expert and intelligent system.
Resumo:
Tese de doutoramento, Linguística (Linguística Educacional), Universidade de Lisboa, Faculdade de Letras, 2016
Resumo:
After advocating flexibilization of non-standard work contracts for many years, some European and international institutions and several policy makers now indicate the standard employment relationship and its regulation as a cause of segmentation between the labour market of "guaranteed" insiders, employed under permanent contracts with effective protection against unfair dismissal, and the market of the “not-guaranteed” outsiders, working with non-standard contracts. Reforms of employment legislation are therefore being promoted and approved in different countries, allegedly aiming to balance the legal protection afforded to standard and non-standard workers. This article firstly argues that this approach is flawed as it oversimplifies reasons of segmentation as it concentrates on an “insiders-outsiders” discourse that cannot easily be transplanted in continental Europe. After reviewing current legislative changes in Italy, Spain and Portugal, it is then argued that lawmakers are focused on “deregulation” rather than “balancing protection” when approving recent reforms. Finally, the mainstream approach to segmentation and some of its derivative proposals, such as calls to introduce a “single permanent contract”, are called into question, as they seem to neglect the essential role of job protection in underpinning the effectiveness of fundamental and constitutional rights at the workplace.
Resumo:
Internet traffic classification is a relevant and mature research field, anyway of growing importance and with still open technical challenges, also due to the pervasive presence of Internet-connected devices into everyday life. We claim the need for innovative traffic classification solutions capable of being lightweight, of adopting a domain-based approach, of not only concentrating on application-level protocol categorization but also classifying Internet traffic by subject. To this purpose, this paper originally proposes a classification solution that leverages domain name information extracted from IPFIX summaries, DNS logs, and DHCP leases, with the possibility to be applied to any kind of traffic. Our proposed solution is based on an extension of Word2vec unsupervised learning techniques running on a specialized Apache Spark cluster. In particular, learning techniques are leveraged to generate word-embeddings from a mixed dataset composed by domain names and natural language corpuses in a lightweight way and with general applicability. The paper also reports lessons learnt from our implementation and deployment experience that demonstrates that our solution can process 5500 IPFIX summaries per second on an Apache Spark cluster with 1 slave instance in Amazon EC2 at a cost of $ 3860 year. Reported experimental results about Precision, Recall, F-Measure, Accuracy, and Cohen's Kappa show the feasibility and effectiveness of the proposal. The experiments prove that words contained in domain names do have a relation with the kind of traffic directed towards them, therefore using specifically trained word embeddings we are able to classify them in customizable categories. We also show that training word embeddings on larger natural language corpuses leads improvements in terms of precision up to 180%.
Resumo:
BACKGROUND AND PURPOSE In clinical diagnosis, medical image segmentation plays a key role in the analysis of pathological regions. Despite advances in automatic and semi-automatic segmentation techniques, time-effective correction tools are commonly needed to improve segmentation results. Therefore, these tools must provide faster corrections with a lower number of interactions, and a user-independent solution to reduce the time frame between image acquisition and diagnosis. METHODS We present a new interactive method for correcting image segmentations. Our method provides 3D shape corrections through 2D interactions. This approach enables an intuitive and natural corrections of 3D segmentation results. The developed method has been implemented into a software tool and has been evaluated for the task of lumbar muscle and knee joint segmentations from MR images. RESULTS Experimental results show that full segmentation corrections could be performed within an average correction time of 5.5±3.3 minutes and an average of 56.5±33.1 user interactions, while maintaining the quality of the final segmentation result within an average Dice coefficient of 0.92±0.02 for both anatomies. In addition, for users with different levels of expertise, our method yields a correction time and number of interaction decrease from 38±19.2 minutes to 6.4±4.3 minutes, and 339±157.1 to 67.7±39.6 interactions, respectively.
Resumo:
where Jones School is now (1959)
Resumo:
Includes index.
Resumo:
Mode of access: Internet.