992 resultados para Variability Models
Resumo:
Dissertação de mestrado integrado em Psicologia
Resumo:
When interacting with each other, people often synchronize spontaneously their movements, e.g. during pendulum swinging, chair rocking[5], walking [4][7], and when executing periodic forearm movements[3].Although the spatiotemporal information that establishes the coupling, leading to synchronization, might be provided by several perceptual systems, the systematic study of different sensory modalities contribution is widely neglected. Considering a) differences in the sensory dominance on the spatial and temporal dimension[5] , b) different cue combination and integration strategies [1][2], and c) that sensory information might provide different aspects of the same event, synchronization should be moderated by the type of sensory modality. Here, 9 naïve participants placed a bottle periodically between two target zones, 40 times, in 12 conditions while sitting in front of a confederate executing the same task. The participant could a) see and hear, b) see , c) hear the confederate, d) or audiovisual information about the movements of the confederate was absent. The couple started in 3 different relative positions (i.e., in-phase, anti-phase, out of phase). A retro-reflective marker was attached to the top of the bottles. Bottle displacement was captured by a motion capture system. We analyzed the variability of the continuous relative phase reflecting the degree of synchronization. Results indicate the emergence of spontaneous synchronization, an increase with bimodal information, and an influence of the initial phase relation on the particular synchronization pattern. Results have theoretical implication for studying cue combination in interpersonal coordination and are consistent with coupled oscillator models.
Resumo:
Coagulase-negative staphylococci (CoNS) are common bacterial colonisers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterised in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intra-species level. On the other hand, biofilm disruption assays demonstrated important inter- and intra-species differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy (CLSM) experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesised that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation.
Resumo:
This review deals with the recent developments and present status of the theoretical models for the simulation of the performance of lithium ion batteries. Preceded by a description of the main materials used for each of the components of a battery -anode, cathode and separator- and how material characteristics affect battery performance, a description of the main theoretical models describing the operation and performance of a battery are presented. The influence of the most relevant parameters of the models, such as boundary conditions, geometry and material characteristics are discussed. Finally, suggestions for future work are proposed.
Resumo:
Extreme value models are widely used in different areas. The Birnbaum–Saunders distribution is receiving considerable attention due to its physical arguments and its good properties. We propose a methodology based on extreme value Birnbaum–Saunders regression models, which includes model formulation, estimation, inference and checking. We further conduct a simulation study for evaluating its performance. A statistical analysis with real-world extreme value environmental data using the methodology is provided as illustration.
Resumo:
The colonization process and successional patterns of a periphytic algal community were evaluated in a Amazonian Viveiro Lake (Rio Branco, Acre, Brazil). Sampling was performed over a period of 35 days; at four-day intervals for 20 days, and then at five-day intervals. Water sampling for physical, chemical and biological analyses was done during the dry and rainy season. Glass slides were used as artificial substrates for periphyton colonization. The structural community was evaluated through population density, algae class, diversity indices and descriptive species. Species richness, diversity and evenness increased as succession progressed. While density of Bacillariophyceae, Euglenophyceae and Zygnemaphyceae increased with succession, Cyanobacteria remained dominant. Synechocystis aquatilis, Synechocystis diplococcus and Navicula pseudolanceolata were the main descriptive species in both the dry and rainy season. Cymbela tumida, Frustulia rhomboides, Trachelomonas lacustris and Closterium acicularis was correlated with an increase in hydrologic level during the rainy season. Conversely, the density of Chlamydomonas sp., Chroomonas nordstedtii, Trachelomonas volvocinopsis, Trachelomonas volvocina and Synechococcus linearis was correlated with an increase in water transparency during the dry season. In general, the periphytic algal community showed high diversity and species richness independent of season. Season also had little influence on representation of algae class and main descriptive species. However, successional patterns varied by season, and changes in hydrologic levels acted directly on the succession path of periphytic algae. More research on periphyton dynamics is needed to improve our understanding of tropical lake ecosystems, especially in Amazonian.
Resumo:
Depression is an extremely heterogeneous disorder. Diverse molecular mechanisms have been suggested to underlie its etiology. To understand the molecular mechanisms responsible for this complex disorder, researchers have been using animal models extensively, namely mice from various genetic backgrounds and harboring distinct genetic modifications. The use of numerous mouse models has contributed to enrich our knowledge on depression. However, accumulating data also revealed that the intrinsic characteristics of each mouse strain might influence the experimental outcomes, which may justify some conflicting evidence reported in the literature. To further understand the impact of the genetic background, we performed a multimodal comparative study encompassing the most relevant parameters commonly addressed in depression, in three of the most widely used mouse strains: Balb/c, C57BL/6, and CD-1. Moreover, female mice were selected for this study taken into account the higher prevalence of depression in women and the fewer animal studies using this gender. Our results show that Balb/c mice have a more pronounced anxious-like behavior than CD-1 and C57BL/6 mice, whereas C57BL/6 animals present the strongest depressive-like trait. Furthermore, C57BL/6 mice display the highest rate of proliferating cells and brain-derived neurotrophic factor (Bdnf) expression levels in the hippocampus, while hippocampal dentate granular neurons of Balb/c mice show smaller dendritic lengths and fewer ramifications. Of notice, the expression levels of inducible nitric oxide synthase (iNos) predict 39.5% of the depressive-like behavior index, which suggests a key role of hippocampal iNOS in depression. Overall, this study reveals important interstrain differences in several behavioral dimensions and molecular and cellular parameters that should be considered when preparing and analyzing experiments addressing depression using mouse models. It further contributes to the literature by revealing the predictive value of hippocampal iNos expression levels in depressive-like behavior, irrespectively of the mouse strain.
Resumo:
We survey results about exact cylindrically symmetric models of gravitational collapse in General Relativity. We focus on models which result from the matching of two spacetimes having collapsing interiors which develop trapped surfaces and vacuum exteriors containing gravitational waves. We collect some theorems from the literature which help to decide a priori about eventual spacetime matchings. We revise, in more detail, some toy models which include some of the main mathematical and physical issues that arise in this context, and compute the gravitational energy flux through the matching boundary of a particular collapsing region. Along the way, we point out several interesting open problems.
Resumo:
In this article, we develop a specification technique for building multiplicative time-varying GARCH models of Amado and Teräsvirta (2008, 2013). The variance is decomposed into an unconditional and a conditional component such that the unconditional variance component is allowed to evolve smoothly over time. This nonstationary component is defined as a linear combination of logistic transition functions with time as the transition variable. The appropriate number of transition functions is determined by a sequence of specification tests. For that purpose, a coherent modelling strategy based on statistical inference is presented. It is heavily dependent on Lagrange multiplier type misspecification tests. The tests are easily implemented as they are entirely based on auxiliary regressions. Finite-sample properties of the strategy and tests are examined by simulation. The modelling strategy is illustrated in practice with two real examples: an empirical application to daily exchange rate returns and another one to daily coffee futures returns.
Resumo:
Dissertação de mestrado em Bioquímica Aplicada – Biomedicina
Resumo:
Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase in the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. We review the current "state-of-the-art" in 3D Tissue Engineering (TE) models developed for and used in cancer research. Scaffold-based TE models and microfluidics, are assessed for their potential to fill the gap between 2D models and clinical application. Recent advances in combining the principles of 3D TE models and microfluidics are discussed, with a special focus on biomaterials and the most promising chip-based 3D models.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Programa Doutoral em Engenharia Eletrónica e de Computadores
Resumo:
Programa Doutoral em Líderes para as Indústrias Tecnológicas
Resumo:
Kinetic models have a great potential for metabolic engineering applications. They can be used for testing which genetic and regulatory modifications can increase the production of metabolites of interest, while simultaneously monitoring other key functions of the host organism. This work presents a methodology for increasing productivity in biotechnological processes exploiting dynamic models. It uses multi-objective dynamic optimization to identify the combination of targets (enzymatic modifications) and the degree of up- or down-regulation that must be performed in order to optimize a set of pre-defined performance metrics subject to process constraints. The capabilities of the approach are demonstrated on a realistic and computationally challenging application: a large-scale metabolic model of Chinese Hamster Ovary cells (CHO), which are used for antibody production in a fed-batch process. The proposed methodology manages to provide a sustained and robust growth in CHO cells, increasing productivity while simultaneously increasing biomass production, product titer, and keeping the concentrations of lactate and ammonia at low values. The approach presented here can be used for optimizing metabolic models by finding the best combination of targets and their optimal level of up/down-regulation. Furthermore, it can accommodate additional trade-offs and constraints with great flexibility.