955 resultados para Three-dimensional image
Resumo:
The vestibular-ocular reflex assessment is important, but not enough. Tridimensional electromagnetic sensor systems represent a new method to assess posturography. Aim: To assess body sway in healthy subjects who had positive Dix Hallpike and Epley maneuvers and with other vestibular dysfunctions by means of a three-dimensional system. Study design: Prospective. Materials and Methods: We had 23 healthy women, 15 with peripheral vestibular dysfunction found upon caloric test and 10 with positive Epley and Dix Hallpike maneuvers. All tests performed in the following positions: open and closed eyes on stable and unstable surfaces. Results: With the Eyes Open and on a stable surface, p < 0.01 between the control group and the one with peripheral vestibular dysfunction in all variables, except the a-p maximum, full speed and mediolateral trajectory velocity, which had a p < 0.01 between the group with vestibular dysfunction and controls in all positions. The group with positive Epley and Dix Hallpike maneuvers had p < 0.01 at full speed and in its components in the x and y in positions with open and eyes closed on an unstable surface. Conclusion: The tridimensional electromagnetic sensors system was able to generate reliable information about body sway in the study volunteers.
Resumo:
The existence and stability of three-dimensional (3D) solitons, in cross-combined linear and nonlinear optical lattices, are investigated. In particular, with a starting optical lattice (OL) configuration such that it is linear in the x-direction and nonlinear in the y-direction, we consider the z-direction either unconstrained (quasi-2D OL case) or with another linear OL (full 3D case). We perform this study both analytically and numerically: analytically by a variational approach based on a Gaussian ansatz for the soliton wavefunction and numerically by relaxation methods and direct integrations of the corresponding Gross-Pitaevskii equation. We conclude that, while 3D solitons in the quasi-2D OL case are always unstable, the addition of another linear OL in the z-direction allows us to stabilize 3D solitons both for attractive and repulsive mean interactions. From our results, we suggest the possible use of spatial modulations of the nonlinearity in one of the directions as a tool for the management of stable 3D solitons.
Resumo:
Objective To evaluate and compare the intraobserver and interobserver reliability and agreement for the biparietal diameter (BPD), abdominal circumference (AC), femur length (FL) and estimated fetal weight (EFW) obtained by two-dimensional ultrasound (2D-US) and three-dimensional ultrasound (3D-US). Methods Singleton pregnant women between 24 and 40 weeks were invited to participate in this study. They were examined using 2D-US in a blinded manner, twice by one observer, intercalated by a scan by a second observer, to determine BPD, AC and FL. In each of the three examinations, three 3D-US datasets (head, abdomen and thigh) were acquired for measurements of the same parameters. We determined EFW using Hadlock's formula. Systematic errors between 3D-US and 2D-US were examined using the paired t-test. Reliability and agreement were assessed by intraclass correlation coefficients (ICCs), limits of agreement (LoA), SD of differences and proportion of differences below arbitrary points. Results We evaluated 102 singleton pregnancies. No significant systematic error between 2D-US and 3D-US was observed. The ICC values were higher for 3D-US in both intra- and interobserver evaluations; however, only for FL was there no overlap in the 95% CI. The LoA values were wider for 2D-US, suggesting that random errors were smaller when using 3D-US. Additionally, we observed that the SD values determined from 3D-US differences were smaller than those obtained for 2D-US. Higher proportions of differences were below the arbitrarily defined cut-off points when using 3D-US. Conclusion 3D-US improved the reliability and agreement of fetal measurements and EFW compared with 2D-US.
Resumo:
Objective To evaluate the intra- and interobserver reliability of assessment of three-dimensional power Doppler (3D-PD) indices from single spherical samples of the placenta. Methods Women with singleton pregnancies at 2440 weeks' gestation were included. Three scans were independently performed by two observers; Observer 1 performed the first and third scan, intercalated by the scan of Observer 2. The observers independently analyzed the 3D-PD datasets that they had previously acquired using four different methods, each using a spherical sample: random sample extending from basal to chorionic plate; random sample with 2 cm3 of volume; directed sample to the region subjectively determined as containing more color Doppler signals extending from basal to chorionic plate; or directed sample with 2 cm3 of volume. The vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were evaluated in each case. The observers were blinded to their own and each other's results. Additional evaluation was performed according to placental location: anterior, posterior and fundal or lateral. Intra- and interobserver reliability was assessed by intraclass correlation coefficients (ICC). Results Ninety-five pregnancies were included in the analysis. All three placental 3D-PD indices showed only weak to moderate reliability (ICC < 0.66 and ICC < 0.48, intra- and interobserver, respectively). The highest values of ICC were observed when using directed spherical samples from basal to chorionic plate. When analyzed by placental location, we found lower ICCs for lateral and fundal placentae compared to anterior and posterior ones. Conclusion Intra- and interobserver reliability of assessment of placental 3D-PD indices from single spherical samples in pregnant women greater than 24 weeks' gestation is poor to moderate, and clinical usefulness of these indices is likely to be limited. Copyright (c) 2012 ISUOG. Published by John Wiley & Sons, Ltd.
Resumo:
In this work, we probe the stability of a z = 3 three-dimensional Lifshitz black hole by using scalar and spinorial perturbations. We found an analytical expression for the quasinormal frequencies of the scalar probe field, which perfectly agree with the behavior of the quasinormal modes obtained numerically. The results for the numerical analysis of the spinorial perturbations reinforce the conclusion of the scalar analysis, i.e., the model is stable under scalar and spinor perturbations. As an application we found the area spectrum of the Lifshitz black hole, which turns out to be equally spaced.
Resumo:
Purpose: Myelodysplastic syndromes (MDS) are a group of disorders characterized by cytopenias, with a propensity for evolution into acute myeloid leukemias (AML). This transformation is driven by genomic instability, but mechanisms remain unknown. Telomere dysfunction might generate genomic instability leading to cytopenias and disease progression. Experimental Design: We undertook a pilot study of 94 patients with MDS (56 patients) and AML (38 patients). The MDS cohort consisted of refractory cytopenia with multilineage dysplasia (32 cases), refractory anemia (12 cases), refractory anemia with excess of blasts (RAEB) 1 (8 cases), RAEB2 (1 case), refractory anemia with ring sideroblasts (2 cases), and MDS with isolated del(5q) (1 case). The AML cohort was composed of AML-M4 (12 cases), AML-M2 (10 cases), AML-M5 (5 cases), AML-M0 (5 cases), AML-M1 (2 cases), AML-M4eo (1 case), and AML with multidysplasia-related changes (1 case). Three-dimensional quantitative FISH of telomeres was carried out on nuclei from bone marrow samples and analyzed using TeloView. Results: We defined three-dimensional nuclear telomeric profiles on the basis of telomere numbers, telomeric aggregates, telomere signal intensities, nuclear volumes, and nuclear telomere distribution. Using these parameters, we blindly subdivided the MDS patients into nine subgroups and the AML patients into six subgroups. Each of the parameters showed significant differences between MDS and AML. Combining all parameters revealed significant differences between all subgroups. Three-dimensional telomeric profiles are linked to the evolution of telomere dysfunction, defining a model of progression from MDS to AML. Conclusions: Our results show distinct three-dimensional telomeric profiles specific to patients with MDS and AML that help subgroup patients based on the severity of telomere dysfunction highlighted in the profiles. Clin Cancer Res; 18(12); 3293-304. (C) 2012 AACR.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the multisegmental static postural balance of active eutrophic and obese elderly women using a three-dimensional system under different sensory conditions. METHODS: A cross-sectional study was conducted on 31 elderly women (16 eutrophic and 15 obese) aged 65 to 75 years. The following anthropometric measurements were obtained: weight, height, waist and hip circumference, and handgrip strength. The physical activity level was evaluated using the International Physical Activity Questionnaire. Body composition was measured using the deuterium oxide dilution technique. The Polhemus (R) Patriot (three-dimensional) equipment was used to measure the parameters of postural balance along the anteroposterior and laterolateral axes. The data acquisition involved one trial of 60 s to test the limit of stability and four trials of 90 s each under the following conditions: (1) eyes open, stable surface; (2) eyes closed, stable surface; (3) eyes open, unstable surface; and (4) eyes closed, unstable surface. RESULTS: For the limit of stability, significant differences were observed in the maximum anteroposterior and laterolateral displacement (p<0.01) and in the parameter maximum anteroposterior displacement in the eyes closed stable surface condition (p<0.01) and maximum anteroposterior and laterolateral displacement in the eyes open unstable surface (p<0.01 and p = 0.03) and eyes closed unstable surface (p<0.01 and p<0.01) conditions. CONCLUSIONS: Obese elderly women exhibited a lower stability limit (lower sway area) compared with eutrophic women, leaving them more vulnerable to falls.
Resumo:
A complete laser cooling setup was built, with focus on threedimensional near-resonant optical lattices for cesium. These consist of regularly ordered micropotentials, created by the interference of four laser beams. One key feature of optical lattices is an inherent ”Sisyphus cooling” process. It efficiently extracts kinetic energy from the atoms, leading to equilibrium temperatures of a few µK. The corresponding kinetic energy is lower than the depth of the potential wells, so that atoms can be trapped. We performed detailed studies of the cooling processes in optical lattices by using the time-of-flight and absorption-imaging techniques. We investigated the dependence of the equilibrium temperature on the optical lattice parameters, such as detuning, optical potential and lattice geometry. The presence of neighbouring transitions in the cesium hyperfine level structure was used to break symmetries in order to identify, which role “red” and “blue” transitions play in the cooling. We also examined the limits for the cooling process in optical lattices, and the possible difference in steady-state velocity distributions for different directions. Moreover, in collaboration with ´Ecole Normale Sup´erieure in Paris, numerical simulations were performed in order to get more insight in the cooling dynamics of optical lattices. Optical lattices can keep atoms almost perfectly isolated from the environment and have therefore been suggested as a platform for a host of possible experiments aimed at coherent quantum manipulations, such as spin-squeezing and the implementation of quantum logic-gates. We developed a novel way to trap two different cesium ground states in two distinct, interpenetrating optical lattices, and to change the distance between sites of one lattice relative to sites of the other lattice. This is a first step towards the implementation of quantum simulation schemes in optical lattices.
Resumo:
[EN]In this paper we propose a finite element method approach for modelling the air quality in a local scale over complex terrain. The area of interest is up to tens of kilometres and it includes pollutant sources. The proposed methodology involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. The methodology is used to simulate a fictitious pollution episode in La Palma island (Canary Island, Spain)…
Resumo:
[ES]The purpose of this paper was to use threedimensional computed tomographic reconstruction as another tool to teach in the veterinary colleges. 2-millimeters thick transverse images of two foals and one dog were obtained. Images provided excellent detail of relevant anatomic structures and detailed information regarding the extent of disease and accurate discrimination of neoplastic versus non-neoplastic diseases. Tridimensional reconstruction can be a valuable diagnostic aid for clinical evaluation of several disturbances and could be used as a tool for teaching anatomy in veterinary schools.
Resumo:
[EN]In this talk we introduce a new methodology for wind field simulation or forecasting over complex terrain. The idea is to use wind measurements or predictions of the HARMONIE mesoscale model as the input data for an adaptive finite element mass consistent wind model [1,2]. The method has been recently implemented in the freely-available Wind3D code [3]. A description of the HARMONIE Non-Hydrostatic Dynamics can be found in [4]. The results of HARMONIE (obtained with a maximum resolution about 1 Km) are refined by the finite element model in a local scale (about a few meters). An interface between both models is implemented such that the initial wind field approximation is obtained by a suitable interpolation of the HARMONIE results…