892 resultados para Three Body Problem
Resumo:
This paper presents the mathematical development of a body-centric nonlinear dynamic model of a quadrotor UAV that is suitable for the development of biologically inspired navigation strategies. Analytical approximations are used to find an initial guess of the parameters of the nonlinear model, then parameter estimation methods are used to refine the model parameters using the data obtained from onboard sensors during flight. Due to the unstable nature of the quadrotor model, the identification process is performed with the system in closed-loop control of attitude angles. The obtained model parameters are validated using real unseen experimental data. Based on the identified model, a Linear-Quadratic (LQ) optimal tracker is designed to stabilize the quadrotor and facilitate its translational control by tracking body accelerations. The LQ tracker is tested on an experimental quadrotor UAV and the obtained results are a further means to validate the quality of the estimated model. The unique formulation of the control problem in the body frame makes the controller better suited for bio-inspired navigation and guidance strategies than conventional attitude or position based control systems that can be found in the existing literature.
Resumo:
This paper reports on exploratory work investigating how children with severe and profound learning difficulties register an awareness of small quantities and how they might use this information to inform their understanding. It draws on studies of typically developing children and investigates their application to pupils whose response to conventional mathematical tasks are often limited because they lack relevance and interest. The responses of the three pupils to individualized learning contexts mirror the progression suggested in the literature, namely from awareness of number to simple actions using number cues to problem-solving behaviour
Resumo:
The performance of three urban land surface models, run in offline mode, with their default external parameters, is evaluated for two distinctly different sites in Helsinki: Torni and Kumpula. The former is a dense city centre site with 22% vegetation, while the latter is a suburban site with over 50% vegetation. At both locations the models are compared against sensible and latent heat fluxes measured using the eddy covariance technique, along with snow depth observations. The cold climate experienced by the city causes strong seasonal variations that include snow cover and stable atmospheric conditions. Most of the time the three models are able to account for the differences between the study areas as well as the seasonal and diurnal variability of the energy balance components. However, the performances are not systematic across the modelled components, season and surface type. The net all-wave radiation is well simulated, with the greatest uncertainties related to snowmelt timing, when the fraction of snow cover has a key role, particularly in determining the surface albedo. For the turbulent fluxes, more variation between the models is seen which can partly be explained by the different methods in their calculation and partly by surface parameter values. For the sensible heat flux, simulation of wintertime values was the main problem, which also leads to issues in predicting near-surface stabilities particularly at the dense city centre site. All models have the most difficulties in simulating latent heat flux. This study particularly emphasizes that improvements are needed in the parameterization of anthropogenic heat flux and thermal parameters in winter, snow cover in spring and evapotranspiration in order to improve the surface energy balance modelling in cold climate cities.
Resumo:
For many tasks, such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based 3D reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding 3D coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer’s perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for 3D reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of 3D vision, more so, I argue, than the case of a static binocular observer.
Resumo:
The Team Formation problem (TFP) has become a well-known problem in the OR literature over the last few years. In this problem, the allocation of multiple individuals that match a required set of skills as a group must be chosen to maximise one or several social positive attributes. Speci�cally, the aim of the current research is two-fold. First, two new dimensions of the TFP are added by considering multiple projects and fractions of people's dedication. This new problem is named the Multiple Team Formation Problem (MTFP). Second, an optimization model consisting in a quadratic objective function, linear constraints and integer variables is proposed for the problem. The optimization model is solved by three algorithms: a Constraint Programming approach provided by a commercial solver, a Local Search heuristic and a Variable Neighbourhood Search metaheuristic. These three algorithms constitute the first attempt to solve the MTFP, being a variable neighbourhood local search metaheuristic the most effi�cient in almost all cases. Applications of this problem commonly appear in real-life situations, particularly with the current and ongoing development of social network analysis. Therefore, this work opens multiple paths for future research.
Resumo:
Introduction Human immunodeficiency virus (HIV) is a serious disease which can be associated with various activity limitations and participation restrictions. The aim of this paper was to describe how HIV affects the functioning and health of people within different environmental contexts, particularly with regard to access to medication. Method Four cross-sectional studies, three in South Africa and one in Brazil, had applied the International Classification of Functioning, Disability and Health (ICF) as a classification instrument to participants living with HIV. Each group was at a different stage of the disease. Only two groups had had continuing access to antiretroviral therapy. The existence of these descriptive sets enabled comparison of the disability experienced by people living with HIV at different stages of the disease and with differing access to antiretroviral therapy. Results Common problems experienced in all groups related to weight maintenance, with two-thirds of the sample reporting problems in this area. Mental functions presented the most problems in all groups, with sleep (50%, 92/185), energy and drive (45%, 83/185), and emotional functions (49%, 90/185) being the most affected. In those on long-term therapy, body image affected 93% (39/42) and was a major problem. The other groups reported pain as a problem, and those with limited access to treatment also reported mobility problems. Cardiopulmonary functions were affected in all groups. Conclusion Functional problems occurred in the areas of impairment and activity limitation in people at advanced stages of HIV, and more limitations occurred in the area of participation for those on antiretroviral treatment. The ICF provided a useful framework within which to describe the functioning of those with HIV and the impact of the environment. Given the wide spectrum of problems found, consideration could be given to a number of ICF core sets that are relevant to the different stages of HIV disease. (C) 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Obesity is an increasingly serious public health problem on a global level. Morbid obesity, defined as a body mass index greater than 40 kg/m(2), is associated with increased mortality and a high burden of obesity-related morbidities. To study the prevalence of morbid obesity in Brazil, three national anthropometric surveys were reanalyzed. Data about bariatric surgeries were obtained from the Ministry of Health Hospital Information System, which is available online. A 255% rise in the prevalence of morbid obesity was observed, starting at 0.18% in 1975-1976 and growing to 0.33% in 1989 and 0.64% in 2002-2003. There was a higher rate in the South in the first two surveys, but the prevalence in the Southeast rose steadily, reaching 0.77% in 2002-2003 and overtaking the South. Since 1999, the Brazilian Unified Health System has covered surgical treatment for morbid obesity. From 2000 to 2006, there was a sixfold increase in the number of surgeries, which topped the 2,500 mark in 2006. The geographic distribution of these surgeries is heavily concentrated in the Southeast, the most developed region of Brazil, where there is also the highest prevalence of morbid obesity. This was followed by the Southern region. The figures for the rise in morbid obesity in Brazil are startling, especially the increase among men. This is a situation that calls for further study, alongside measures to encourage the adoption of healthy lifestyles. Preventive measures aimed at slowing down or reversing the obesity epidemic are urgently required.
Resumo:
The study aimed at verifying the associated factors of self-perceived body changes in adults living with HIV in highly-active antiretroviral therapy (HAART) in the city of Sao Paulo, Brazil. This cross-sectional study was conducted among people living with HIV on HAART for at least three months. A standardized questionnaire was used for assessing self-perceived body changes. Associated factors relating to self-reported body changes in people living with HIV (PLHIV) were assessed with Student`s t-test and chi-square test. In total, 507 patients were evaluated. The mean time since diagnosis was 6.6 years [standard deviation (SD)+/-4.1], and the mean duration of HAART was 5.1 years (SD+/-3.3). Self-perceived body changes were reported by 79.5% of the participants and were associated with viral load and duration of HAART. Fibre intake was lower among males who gained in abdominal fat (p=0.035). HAART-related body changes were reported by the large majority of the population and were associated with demographic and clinical variables.
Resumo:
Pilostyles species (Apodanthaceae) are endoparasites in stems of the plant family Fabaceae. The body comprises masses of parenchyma in the host bark and cortex, with sinkers, comprising groups of twisted tracheal elements surrounded by parenchyma that enter the secondary xylem of the host plant. Here we report for the first time the effects of Pilostyles parasitism on host secondary xylem. We obtained healthy and parasitized stems from Mimosa foliolosa, M. maguirei and M. setosa and compared vessel element length, fiber length, vessel diameter and vessel frequency, measured through digital imaging. Also, tree height and girth were compared between healthy and parasitized M. setosa. When parasitized, plant size, vessel diameter, vessel element length and fiber length are all less than in healthy plants. Also, vessel frequency is greater and vessels are narrower in parasitized stems. These responses to parasitism are similar to those observed in stressed plants. Thus, hosts respond to the parasite by changing its wood micromorphology in favour of increased hydraulic safety.
Resumo:
This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This article describes and compares three heuristics for a variant of the Steiner tree problem with revenues, which includes budget and hop constraints. First, a greedy method which obtains good approximations in short computational times is proposed. This initial solution is then improved by means of a destroy-and-repair method or a tabu search algorithm. Computational results compare the three methods in terms of accuracy and speed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work deals with the development of a numerical technique for simulating three-dimensional viscoelastic free surface flows using the PTT (Phan-Thien-Tanner) nonlinear constitutive equation. In particular, we are interested in flows possessing moving free surfaces. The equations describing the numerical technique are solved by the finite difference method on a staggered grid. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are considered. The PTT equation is solved by a high order method, which requires the calculation of the extra-stress tensor on the mesh contours. To validate the numerical technique developed in this work flow predictions for fully developed pipe flow are compared with an analytic solution from the literature. Then, results of complex free surface flows using the FIT equation such as the transient extrudate swell problem and a jet flowing onto a rigid plate are presented. An investigation of the effects of the parameters epsilon and xi on the extrudate swell and jet buckling problems is reported. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Inside the `cavernous sinus` or `parasellar region` the human internal carotid artery takes the shape of a siphon that is twisted and torqued in three dimensions and surrounded by a network of veins. The parasellar section of the internal carotid artery is of broad biological and medical interest, as its peculiar shape is associated with temperature regulation in the brain and correlated with the occurrence of vascular pathologies. The present study aims to provide anatomical descriptions and objective mathematical characterizations of the shape of the parasellar section of the internal carotid artery in human infants and its modifications during ontogeny. Three-dimensional (3D) computer models of the parasellar section of the internal carotid artery of infants were generated with a state-of-the-art 3D reconstruction method and analysed using both traditional morphometric methods and novel mathematical algorithms. We show that four constant, demarcated bends can be described along the infant parasellar section of the internal carotid artery, and we provide measurements of their angles. We further provide calculations of the curvature and torsion energy, and the total complexity of the 3D skeleton of the parasellar section of the internal carotid artery, and compare the complexity of this in infants and adults. Finally, we examine the relationship between shape parameters of the parasellar section of the internal carotid artery in infants, and the occurrence of intima cushions, and evaluate the reliability of subjective angle measurements for characterizing the complexity of the parasellar section of the internal carotid artery in infants. The results can serve as objective reference data for comparative studies and for medical imaging diagnostics. They also form the basis for a new hypothesis that explains the mechanisms responsible for the ontogenetic transformation in the shape of the parasellar section of the internal carotid artery.
Resumo:
Using digitized images of the three-dimensional, branching structures for root systems of bean seedlings, together with analytical and numerical methods that map a common susceptible-infected- recovered (`SIR`) epidemiological model onto the bond percolation problem, we show how the spatially correlated branching structures of plant roots affect transmission efficiencies, and hence the invasion criterion, for a soil-borne pathogen as it spreads through ensembles of morphologically complex hosts. We conclude that the inherent heterogeneities in transmissibilities arising from correlations in the degrees of overlap between neighbouring plants render a population of root systems less susceptible to epidemic invasion than a corresponding homogeneous system. Several components of morphological complexity are analysed that contribute to disorder and heterogeneities in the transmissibility of infection. Anisotropy in root shape is shown to increase resilience to epidemic invasion, while increasing the degree of branching enhances the spread of epidemics in the population of roots. Some extension of the methods for other epidemiological systems are discussed.
Resumo:
Comparative molecular field analysis (CoMFA) studies were conducted on a series of 100 isoniazid derivatives as anti-tuberculosis agents using two receptor-independent structural data set alignment strategies: (1) rigid-body fit, and (2) pharmacophore-based. Significant cross-validated correlation coefficients were obtained (CoMFA(1), q(2) = 0,75 and CoMFA(2), q(2) = 0.74), indicating the potential of the models for untested compounds. The models were then used to predict the inhibitory potency of 20 test set compounds that were not included in the training set, and the predicted values were in good agreement with the experimental results.