999 resultados para Sr2 -doped alpha-BBO substrates
Resumo:
Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erba) rescues Nr2e3- associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations.
Resumo:
We studied the clinical, electrophysiological, and pathological features, outcome, and frequency of anti-tumor necrosis factor alpha (a-TNF) medications-induced neuropathies (ATIN) in patients with inflammatory disorders. Of 2,017 patients treated with a-TNF medication, 12 patients met our inclusion criteria for a prevalence of 0.60% and an incidence of 0.4 cases per 1,000 person-years. The median time from a-TNF medication treatment to ATIN was 16.8 months (range 2-60 months). Six patients had focal or multifocal peripheral neuropathies. The other six had generalized neuropathies. For all, a-TNF medication was stopped. Seven patients received immunoglobulin infusions. ATIN outcome was favorable in all but one patient. ATINs are rare and heterogeneous neuropathies. In 10 patients, the neuropathy was "inflammatory", suggesting that it could be due to systemic pro-inflammatory effects of a-TNF agents.
Resumo:
Uncoupling protein-3 (UCP3) is a member of the mitochondrial carrier family expressed preferentially in skeletal muscle and heart. It appears to be involved in metabolic handling of fatty acids in a way that minimizes excessive production of reactive oxygen species. Fatty acids are powerful regulators of UCP3 gene transcription. We have found that the role of peroxisome proliferator-activated receptor-α (PPARα) on the control of UCP3 gene expression depends on the tissue and developmental stage. In adults, UCP3 mRNA expression is unaltered in skeletal muscle from PPARα-null mice both in basal conditions and under the stimulus of starvation. In contrast, UCP3 mRNA is down-regulated in adult heart both in fed and fasted PPARα-null mice. This occurs despite the increased levels of free fatty acids caused by fasting in PPARα-null mice. In neonates, PPARα-null mice show impaired UCP3 mRNA expression in skeletal muscle in response to milk intake, and this is not a result of reduced free fatty acid levels. The murine UCP3 promoter is activated by fatty acids through either PPARα or PPARδ but not by PPARγ or retinoid X receptor alone. PPARδ-dependent activation could be a potential compensatory mechanism to ensure appropriate expression of UCP3 gene in adult skeletal muscle in the absence of PPARα. However, among transcripts from other PPARα and PPARδ target genes, only those acutely induced by milk intake in wild-type neonates were altered in muscle or heart from PPARα-null neonates. Thus, PPARα-dependent regulation is required for appropriate gene regulation of UCP3 as part of the subset of fatty-acid-responsive genes in neonatal muscle and heart.
Resumo:
Laser scanning is becoming an increasingly popular method for measuring 3D objects in industrial design. Laser scanners produce a cloud of 3D points. For CAD software to be able to use such data, however, this point cloud needs to be turned into a vector format. A popular way to do this is to triangulate the assumed surface of the point cloud using alpha shapes. Alpha shapes start from the convex hull of the point cloud and gradually refine it towards the true surface of the object. Often it is nontrivial to decide when to stop this refinement. One criterion for this is to do so when the homology of the object stops changing. This is known as the persistent homology of the object. The goal of this thesis is to develop a way to compute the homology of a given point cloud when processed with alpha shapes, and to infer from it when the persistent homology has been achieved. Practically, the computation of such a characteristic of the target might be applied to power line tower span analysis.
Resumo:
Nanoparticles offer adjustable and expandable reactive surface area compared to the more traditional solid phase forms utilized in bioaffinity assays due to the high surface to-volume ratio. The versatility of nanoparticles is further improved by the ability to incorporate various molecular complexes such as luminophores into the core. Nanoparticle labels composed of polystyrene, silica, inorganic crystals doped with high number of luminophores, preferably lanthanide(III) complexes, are employed in bioaffinity assays. Other label species such as semiconductor crystals (quantum dots) or colloidal gold clusters are also utilized. The surface derivatization of such particles with biomolecules is crucial for the applicability to bioaffinity assays. The effectiveness of a coating is reliant on the biomolecule and particle surface characteristics and the selected coupling technique. The most critical aspects of the particle labels in bioaffinity assays are their size-dependent features. For polystyrene, silica and inorganic phosphor particles, these include the kinetics, specific activity and colloidal stability. For quantum dots and gold colloids, the spectral properties are also dependent on particle size. This study reports the utilization of europium(III)-chelate-embedded nanoparticle labels in the development of bioaffinity assays. The experimental covers both the heterogeneous and homogeneous assay formats elucidating the wide applicability of the nanoparticles. It was revealed that the employment of europium(III) nanoparticles in heterogeneous assays for viral antigens, adenovirus hexon and hepatitis B surface antigen (HBsAg), resulted in sensitivity improvement of 10-1000 fold compared to the reference methods. This improvement was attributed to the extreme specific activity and enhanced monovalent affinity of the nanoparticles conjugates. The applicability of europium(III)-chelate-doped nanoparticles to homogeneous assay formats were proved in two completely different experimental settings; assays based on immunological recognition or proteolytic activity. It was shown that in addition to small molecule acceptors, particulate acceptors may also be employed due to the high specific activity of the particles promoting proximity-induced reabsorptive energy transfer in addition to non-radiative energy transfer. The principle of proteolytic activity assay relied on a novel dual-step FRET concept, wherein the streptavidin-derivatized europium(III)-chelate-doped nanoparticles were used as donors for peptide substrates modified with biotin and terminal europium emission compliant primary acceptor and a secondary quencher acceptor. The recorded sensitized emission was proportional to the enzyme activity, and the assay response to various inhibitor doses was in agreement with those found in literature showing the feasibility of the technique. Experiments regarding the impact of donor particle size on the extent of direct donor fluorescence and reabsorptive excitation interference in a FRET-based application was conducted with differently sized europium(III)-chelate-doped nanoparticles. It was shown that the size effect was minimal
Resumo:
Postprint (published version)
High-Performance-Tensile-Strength Alpha-Grass Reinforced Starch-Based Fully Biodegradable Composites
Resumo:
Though there has been a great deal of work concerning the development of natural fibers in reinforced starch-based composites, there is still more to be done. In general, cellulose fibers have lower strength than glass fibers; however, their specific strength is not far from that of fiberglass. In this work, alpha-fibers were obtained from alpha-grass through a mild cooking process. The fibers were used to reinforce a starch-based biopolymer. Composites including 5 to 35% (w/w) alpha-grass fibers in their formulation were prepared, tested, and subsequently compared with those of wood- and fiberglass-reinforced polypropylene (PP). The term “high-performance” refers to the tensile strength of the studied composites and is mainly due to a good interphase, a good dispersion of the fibers inside the matrix, and a good aspect ratio. The tensile strength of the composites showed a linear evolution for fiber contents up to 35% (w/w). The strain at break of the composites decreased with the fiber content and showed the stiffening effects of the reinforcement. The prepared composites showed high mechanical properties, even approaching those of glass fiber reinforced composites
Resumo:
Poly-L-alanine forms stable right-handed alpha-helices, whereas Poly-D-alanine is stable as left-handed alpha helices.
Resumo:
Cyclodextrins (CDs) are cyclic oligosaccharides comprised of six or more glucose units connected by alpha-1,4 bonds. They have hydrophobic cavities with a hydrophilic exterior, and are versatile receptors for a variety of substrates. This ability allows them to be applied in many fields, as distinct as supramolecular chemistry, nanotechnology, pharmaceuticals, green chemistry, agrochemicals, analytical chemistry, toiletries, foods, and cosmetics. This review summarizes several aspects related to the physico-chemical properties of CDs and discusses their potential applications illustrated by recent examples. The prospects for their use in several areas are also described.
Resumo:
This thesis is devoted to investigations of three typical representatives of the II-V diluted magnetic semiconductors, Zn1-xMnxAs2, (Zn1-xMnx)3As2 and p-CdSb:Ni. When this work started the family of the II-V semiconductors was presented by only the compounds belonging to the subgroup II3-V2, as (Zn1-xMnx)3As2, whereas the rest of the materials mentioned above were not investigated at all. Pronounced low-field magnetic irreversibility, accompanied with a ferromagnetic transition, are observed in Zn1-xMnxAs2 and (Zn1-xMnx)3As2 near 300 K. These features give evidence for presence of MnAs nanosize magnetic clusters, responsible for frustrated ground magnetic state. In addition, (Zn1-xMnx)3As2 demonstrates large paramagnetic response due to considerable amount of single Mn ions and small antiferromagnetic clusters. Similar paramagnetic system existing in Zn1-xMnxAs2 is much weaker. Distinct low-field magnetic irreversibility, accompanied with a rapid saturation of the magnetization with increasing magnetic field, is observed near the room temperature in p- CdSb:Ni, as well. Such behavior is connected to the frustrated magnetic state, determined by Ni-rich magnetic Ni1-xSbx nanoclusters. Their large non-sphericity and preferable orientations are responsible for strong anisotropy of the coercivity and saturation magnetization of p- CdSb:Ni. Parameters of the Ni1-xSbx nanoclusters are estimated. Low-temperature resistivity of p-CdSb:Ni is governed by a hopping mechanism of charge transfer. The variable-range hopping conductivity, observed in zero magnetic field, demonstrates a tendency of transformation into the nearest-neighbor hopping conductivity in non-zero magnetic filed. The Hall effect in p-CdSb:Ni exhibits presence of a positive normal and a negative anomalous contributions to the Hall resistivity. The normal Hall coefficient is governed mainly by holes activated into the valence band, whereas the anomalous Hall effect, attributable to the Ni1-xSbx nanoclusters with ferromagnetically ordered internal spins, exhibits a low-temperature power-law resistivity scaling.
Resumo:
Molekyylimarkkerit ja pitkäaikainen alfainterferonihoito munuaissyövässä Munuaissyöpäpotilaiden viiden vuoden elossaololuku on noin 50 %. Aikaisempien tutkimuksien mukaan viiden vuoden elossaololuku metastasoituneessa munuaissyövässä on 3-16 %, kun käytettiin alfainterferonia sisältävää hoitoa. Tyypillisesti alfainterferonia on käytetty vähemmäin kuin 6 kuukautta. Avoimia kysymyksiä ovat alfainterferonin optimaalinen hoitoannos ja hoidon kesto yksin tai yhdessä uusien täsmähoitojen kanssa. Tärkeimmät tavoitteet olivat tutkia 1) jaksotetun pitkäaikaisen alfainterferonihoidon tehoa ja siedettävyyttä metastasoituneessa munuaissyövässä ja 2) p53-, Ki-67- ja COX-2-proteiinituotannon ennusteellista merkitystä munuaissyövässä. Tutkimuksessa 117 metastasoituneelle munuaissyöpää sairastaneelle potilaalle etsittiin yksilöllinen hänen sietämänsä maksimaalinen hoitoannos rekombinanttia alfa2a-interferonia (Roferon-ATM). Hoitoa pyrittiin jatkamaan 24 kuukauden ajan. Kolmen hoitoviikon jälkeen pidettiin yhden viikon tauko. Hoito lopetettiin, jos ilmaantui vakavia haittavaikutuksia tai tauti eteni. Toisessa tutkimuksessa proteiinituotanto analysoitiin immunohistokemiallisesti munuaissyöpäpotilaiden kasvainnäytteistä, joita oli säilytetty parafiinissa. Kasvainnäytteet oli otettu talteen munuaisen poistoleikkauksen yhteydessä. Nämä potilaat jaettiin kolmeen eri ryhmään: metastasointi primaarivaiheessa (n=29), metastasointi myöhemmin (n=37) ja ei metastasointia (n=51). Keskimääräinen alfainterferonihoidon kesto oli 11 kuukautta (kk) [0,5 – 32 kk]. Objektiivinen hoitovaste todettiin 17 %:lla, tautitilanne pysyi ennallaan 42 %:lla ja myöhäinen vaste (yli 12 kk:tta hoidon aloittamisesta) todettiin 3 %:lla. Aika vasteen saavuttamisesta taudin etenemiseen oli keskimäärin 8 kk ja elinaika 19,1 kk. Viiden vuoden elossaololuku oli 16 %. Jos metastasoituneella munuaissyöpäpotilaalla oli keuhkometastasointi, hän selvisi todennäköisemmin viisi vuotta kuin muut potilaat. Henkeä uhkaavia sivuvaikutuksia ei todettu. Yli 12 kk:n ajan kestävä alfainterferonihoito on hyödyllistä niille potilaille, jotka ovat saaneet objektiivisen hoitovasteen tai tautitilanne on pysynyt ennallaan. Positiivinen p53- ja Ki-67-ekspressio yhdessä viittaavat suureen metastasoinnin todennäköisyyteen. Positiivinen COX-2-ekspressio viittaa viivästyneeseen metastaasien ilmaantumiseen. Metastasoituneilla potilailla positiiviset p53- ja Ki-67-ekspressiot viittaavat huonoon ennusteeseen, mutta positiivinen COX-2 ekspressio viittaa suotuisaan ennusteeseen. Positiivinen COX-2- ja negatiivinen Ki-67-ekspressio yhdessä viittaavat parantuneeseen ennusteeseen metastasoituneessa munuaissyövässä.
Resumo:
Solid solution of iron doped potassium strontium niobate with KSr2(FeNb4)O15-Δ stoichiometry was prepared by high efficiency ball milling method. Structural characterization was carried out by X-ray diffraction. Crystalline structure was analyzed by the Rietveld refinements using the FullProf software. The results showed a tetragonal system with the tetragonal tungsten bronze structure - TTB (a = 12.4631 (2) Å and c = 3.9322 (6) Å, V = 610.78 (2) ų). In this work, the sites occupancy by the K+, Sr2+ and Fe3+ cations on the TTB structure were determined. NbO6 polihedra distortion and its correlation with the theoretical polarization are discussed.
Resumo:
We carried out an electrochemical study about zinc electrodeposition onto GCE and HOPG substrates from an electrolytic plating bath containing 0.01M ZnSO4 + 1M (NH4)2SO4 at pH 7. Under our experimental conditions the predominant chemical species was the complex [ZnSO4(H2O)5]. The chronoamperometric study showed that zinc electrodeposition follows a typical 3D nucleation mechanism in both substrates. The average dG calculated for the stable nucleus formation was 6.92 x 10-21 J nuclei"1 and 1.35 x 10-20 J nuclei"1 for GCE and HOPG, respectively. The scanning electron microscopy (SEM) images showed different nucleation and growth processes on GCE and HOPG substrates at same overpotential.
Resumo:
In present work, we analyzed the copper electrodeposition onto GCE (System I) and HOPGE (System II) from perchlorate solutions. The current density transients obtained from system I and II were well described through a kinetic mechanism that involves four different contributions: (a) a Langmuir type adsorption process, b) an electron transfer from Cu2+→Cu+, (c) a 3D nucleation limited by a mass transfer reaction and (d) a proton reduction process. It was observed that the values of the nucleation rate, the number of active nucleation sites were increased with the overpotential and they are bigger onto GCE in comparison with HOPGE.
Resumo:
The Direct Black 22 dye was electrooxidized at 30 mA cm-2 in a flow cell using a BDD or β-PbO2 anode, varying pH (3, 7, 11), temperature (10, 25, 45 °C), and [NaCl] (0 or 1.5 g L-1). In the presence of NaCl, decolorization rates were similar for all conditions investigated, but much higher than predicted through a theoretical model assuming mass-transport control; similar behavior was observed for COD removal (at pH 7, 25 °C), independently of the anode. With no NaCl, COD removals were also higher than predicted with a theoretical model, which suggests the existence of distinct dye degradation pathways.