946 resultados para Spectral theory, differential operators, quantum graphs, indefinite operators


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation investigates the connection between spectral analysis and frame theory. When considering the spectral properties of a frame, we present a few novel results relating to the spectral decomposition. We first show that scalable frames have the property that the inner product of the scaling coefficients and the eigenvectors must equal the inverse eigenvalues. From this, we prove a similar result when an approximate scaling is obtained. We then focus on the optimization problems inherent to the scalable frames by first showing that there is an equivalence between scaling a frame and optimization problems with a non-restrictive objective function. Various objective functions are considered, and an analysis of the solution type is presented. For linear objectives, we can encourage sparse scalings, and with barrier objective functions, we force dense solutions. We further consider frames in high dimensions, and derive various solution techniques. From here, we restrict ourselves to various frame classes, to add more specificity to the results. Using frames generated from distributions allows for the placement of probabilistic bounds on scalability. For discrete distributions (Bernoulli and Rademacher), we bound the probability of encountering an ONB, and for continuous symmetric distributions (Uniform and Gaussian), we show that symmetry is retained in the transformed domain. We also prove several hyperplane-separation results. With the theory developed, we discuss graph applications of the scalability framework. We make a connection with graph conditioning, and show the in-feasibility of the problem in the general case. After a modification, we show that any complete graph can be conditioned. We then present a modification of standard PCA (robust PCA) developed by Cand\`es, and give some background into Electron Energy-Loss Spectroscopy (EELS). We design a novel scheme for the processing of EELS through robust PCA and least-squares regression, and test this scheme on biological samples. Finally, we take the idea of robust PCA and apply the technique of kernel PCA to perform robust manifold learning. We derive the problem and present an algorithm for its solution. There is also discussion of the differences with RPCA that make theoretical guarantees difficult.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We obtain invertibility and Fredholm criteria for the Wiener-Hopf plus Hankel operators acting between variable exponent Lebesgue spaces on the real line. Such characterizations are obtained via the so-called even asymmetric factorization which is applied to the Fourier symbols of the operators under study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A weighted Bethe graph $B$ is obtained from a weighted generalized Bethe tree by identifying each set of children with the vertices of a graph belonging to a family $F$ of graphs. The operation of identifying the root vertex of each of $r$ weighted Bethe graphs to the vertices of a connected graph $\mathcal{R}$ of order $r$ is introduced as the $\mathcal{R}$-concatenation of a family of $r$ weighted Bethe graphs. It is shown that the Laplacian eigenvalues (when $F$ has arbitrary graphs) as well as the signless Laplacian and adjacency eigenvalues (when the graphs in $F$ are all regular) of the $\mathcal{R}$-concatenation of a family of weighted Bethe graphs can be computed (in a unified way) using the stable and low computational cost methods available for the determination of the eigenvalues of symmetric tridiagonal matrices. Unlike the previous results already obtained on this topic, the more general context of families of distinct weighted Bethe graphs is herein considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The energy of a symmetric matrix is the sum of the absolute values of its eigenvalues. We introduce a lower bound for the energy of a symmetric partitioned matrix into blocks. This bound is related to the spectrum of its quotient matrix. Furthermore, we study necessary conditions for the equality. Applications to the energy of the generalized composition of a family of arbitrary graphs are obtained. A lower bound for the energy of a graph with a bridge is given. Some computational experiments are presented in order to show that, in some cases, the obtained lower bound is incomparable with the well known lower bound $2\sqrt{m}$, where $m$ is the number of edges of the graph.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis considers non-perturbative methods in quantum field theory with applications to gravity and cosmology. In particular, there are chapters on black hole holography, inflationary model building, and the conformal bootstrap.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let E and F be Banach spaces. A linear operator from E to F is said to be strictly singular if, for any subspace Q aS, E, the restriction of A to Q is not an isomorphism. A compactness criterion for any strictly singular operator from L (p) to L (q) is found. There exists a strictly singular but not superstrictly singular operator on L (p) , provided that p not equal 2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Entangled quantum states can be given a separable decomposition if we relax the restriction that the local operators be quantum states. Motivated by the construction of classical simulations and local hidden variable models, we construct `smallest' local sets of operators that achieve this. In other words, given an arbitrary bipartite quantum state we construct convex sets of local operators that allow for a separable decomposition, but that cannot be made smaller while continuing to do so. We then consider two further variants of the problem where the local state spaces are required to contain the local quantum states, and obtain solutions for a variety of cases including a region of pure states around the maximally entangled state. The methods involve calculating certain forms of cross norm. Two of the variants of the problem have a strong relationship to theorems on ensemble decompositions of positive operators, and our results thereby give those theorems an added interpretation. The results generalise those obtained in our previous work on this topic [New J. Phys. 17, 093047 (2015)].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metamamterials are 1D, 2D or 3D arrays of articial atoms. The articial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. This behavior can be understood employing methods in nonlinear dynamics; the sharp onset, and the gap of IM, are due to sudden state jumps during a beat of the two-tone sum input signal. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we develop a new family of graph kernels where the graph structure is probed by means of a discrete-time quantum walk. Given a pair of graphs, we let a quantum walk evolve on each graph and compute a density matrix with each walk. With the density matrices for the pair of graphs to hand, the kernel between the graphs is defined as the negative exponential of the quantum Jensen–Shannon divergence between their density matrices. In order to cope with large graph structures, we propose to construct a sparser version of the original graphs using the simplification method introduced in Qiu and Hancock (2007). To this end, we compute the minimum spanning tree over the commute time matrix of a graph. This spanning tree representation minimizes the number of edges of the original graph while preserving most of its structural information. The kernel between two graphs is then computed on their respective minimum spanning trees. We evaluate the performance of the proposed kernels on several standard graph datasets and we demonstrate their effectiveness and efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a quasi-nilpotent injective compact operator with dense range. In particular, this new universal operator invites an approach to the Invariant Subspace Problem that uses properties of operators that commute with the universal operator.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis I show a triple new connection we found between quantum integrability, N=2 supersymmetric gauge theories and black holes perturbation theory. I use the approach of the ODE/IM correspondence between Ordinary Differential Equations (ODE) and Integrable Models (IM), first to connect basic integrability functions - the Baxter’s Q, T and Y functions - to the gauge theory periods. This fundamental identification allows several new results for both theories, for example: an exact non linear integral equation (Thermodynamic Bethe Ansatz, TBA) for the gauge periods; an interpretation of the integrability functional relations as new exact R-symmetry relations for the periods; new formulas for the local integrals of motion in terms of gauge periods. This I develop in all details at least for the SU(2) gauge theory with Nf=0,1,2 matter flavours. Still through to the ODE/IM correspondence, I connect the mathematically precise definition of quasinormal modes of black holes (having an important role in gravitational waves’ obervations) with quantization conditions on the Q, Y functions. In this way I also give a mathematical explanation of the recently found connection between quasinormal modes and N=2 supersymmetric gauge theories. Moreover, it follows a new simple and effective method to numerically compute the quasinormal modes - the TBA - which I compare with other standard methods. The spacetimes for which I show these in all details are in the simplest Nf=0 case the D3 brane in the Nf=1,2 case a generalization of extremal Reissner-Nordström (charged) black holes. Then I begin treating also the Nf=3,4 theories and argue on how our integrability-gauge-gravity correspondence can generalize to other types of black holes in either asymptotically flat (Nf=3) or Anti-de-Sitter (Nf=4) spacetime. Finally I begin to show the extension to a 4-fold correspondence with also Conformal Field Theory (CFT), through the renowned AdS/CFT correspondence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study carried out in this thesis is devoted to spectral analysis of systems of PDEs related also with quantum physics models. Namely, the research deals with classes of systems that contain certain quantum optics models such as Jaynes-Cummings, Rabi and their generalizations that describe light-matter interaction. First we investigate the spectral Weyl asymptotics for a class of semiregular systems, extending to the vector-valued case results of Helffer and Robert, and more recently of Doll, Gannot and Wunsch. Actually, the asymptotics by Doll, Gannot and Wunsch is more precise (that is why we call it refined) than the classical result by Helffer and Robert, but deals with a less general class of systems, since the authors make an hypothesis on the measure of the subset of the unit sphere on which the tangential derivatives of the X-Ray transform of the semiprincipal symbol vanish to infinity order. Abstract Next, we give a meromorphic continuation of the spectral zeta function for semiregular differential systems with polynomial coefficients, generalizing the results by Ichinose and Wakayama and Parmeggiani. Finally, we state and prove a quasi-clustering result for a class of systems including the aforementioned quantum optics models and we conclude the thesis by showing a Weyl law result for the Rabi model and its generalizations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This PhD thesis focuses on studying the classical scattering of massive/massless particles toward black holes, and investigating double copy relations between classical observables in gauge theories and gravity. This is done in the Post-Minkowskian approximation i.e. a perturbative expansion of observables controlled by the gravitational coupling constant κ = 32πGN, with GN being the Newtonian coupling constant. The investigation is performed by using the Worldline Quantum Field Theory (WQFT), displaying a worldline path integral describing the scattering objects and a QFT path integral in the Born approximation, describing the intermediate bosons exchanged in the scattering event by the massive/massless particles. We introduce the WQFT, by deriving a relation between the Kosower- Maybee-O’Connell (KMOC) limit of amplitudes and worldline path integrals, then, we use that to study the classical Compton amplitude and higher point amplitudes. We also present a nice application of our formulation to the case of Hard Thermal Loops (HTL), by explicitly evaluating hard thermal currents in gauge theory and gravity. Next we move to the investigation of the classical double copy (CDC), which is a powerful tool to generate integrands for classical observables related to the binary inspiralling problem in General Relativity. In order to use a Bern-Carrasco-Johansson (BCJ) like prescription, straight at the classical level, one has to identify a double copy (DC) kernel, encoding the locality structure of the classical amplitude. Such kernel is evaluated by using a theory where scalar particles interacts through bi-adjoint scalars. We show here how to push forward the classical double copy so to account for spinning particles, in the framework of the WQFT. Here the quantization procedure on the worldline allows us to fully reconstruct the quantum theory on the gravitational side. Next we investigate how to describe the scattering of massless particles off black holes in the WQFT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis we study the heat kernel, a useful tool to analyze various properties of different quantum field theories. In particular, we focus on the study of the one-loop effective action and the application of worldline path integrals to derive perturbatively the heat kernel coefficients for the Proca theory of massive vector fields. It turns out that the worldline path integral method encounters some difficulties if the differential operator of the heat kernel is of non-minimal kind. More precisely, a direct recasting of the differential operator in terms of worldline path integrals, produces in the classical action a non-perturbative vertex and the path integral cannot be solved. In this work we wish to find ways to circumvent this issue and to give a suggestion to solve similar problems in other contexts.