782 resultados para Selection negativity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For first-order Horn clauses without equality, resolution is complete with an arbitrary selection of a single literal in each clause [dN 96]. Here we extend this result to the case of clauses with equality for superposition-based inference systems. Our result is a generalization of the result given in [BG 01]. We answer their question about the completeness of a superposition-based system for general clauses with an arbitrary selection strategy, provided there exists a refutation without applications of the factoring inference rule.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2006/1020/thumbnail.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Millions of unconscious calculations are made daily by pedestrians walking through the Colby College campus. I used ArcGIS to make a predictive spatial model that chose paths similar to those that are actually used by people on a regular basis. To make a viable model of how most travelers choose their way, I considered both the distance required and the type of traveling surface. I used an iterative process to develop a scheme for weighting travel costs which resulted in accurate least-cost paths to be predicted by ArcMap. The accuracy was confirmed when the calculated routes were compared to satellite photography and were found to overlap well-worn “shortcuts” taken between the paved paths throughout campus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian inflation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in different measures of forecasting accuracy are substantial, especially for short horizons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reinterprets results of Ohanissian et al (2003) to show the asymptotic equivalence of temporally aggregating series and using less bandwidth in estimating long memory by Geweke and Porter-Hudak’s (1983) estimator, provided that the same number of periodogram ordinates is used in both cases. This equivalence is in the sense that their joint distribution is asymptotically normal with common mean and variance and unity correlation. Furthermore, I prove that the same applies to the estimator of Robinson (1995). Monte Carlo simulations show that this asymptotic equivalence is a good approximation in finite samples. Moreover, a real example with the daily US Dollar/French Franc exchange rate series is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian in ation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in di¤erent measures of forecasting accuracy are substantial, especially for short horizons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho consiste em estudar modelos incluindo agentes com informação completa e incompleta sobre o ambiente econômico. Prova-se a existência de equilíbrio em que esses dois agentes coexistem e sob, algumas condições, obtêm-se que esse equilíbrio é recursivo e contínuo, ou seja, pode ser implementado por uma função contínua de transição que relaciona as variáveis de equilíbrio entre dois períodos consecutivos. Mostra-se, sob algumas hipóteses, que em equilíbrios recursivos contínuos, os agentes que cometem erros persistentes nas antecipações dos preços de equilíbrio são eliminados do mercado. Finalmente, exibimos diversos exemplos numéricos, no caso de mercados incompletos e informação completa, em que os agentes com expectativas racionais são eliminados do mercado. Usam-se métodos numéricos alternativos que possibilitam computar um equilíbrio em modelos com agentes heterogêneos.