807 resultados para SPACES
Resumo:
During the process of accessing services provided within urban interior and outer spaces the elderly and disabled individuals encounter with a myriad of problems due to the limitations posed by structured environments. This limitation hinders elderly and disabled individuals from mobility without assistance, which in turn negatively affects their full participation to urban and social life. Rearrangement of urban spaces to meet the needs of elderly and disabled individuals would correspondingly bolster life quality of the entire range of users. Within the scope of present research, as mandated by universal design principles to stick to plans and designs approaches inclusive for all users, it is aimed to conduct evaluations on the use of urban outer spaces situated within Konya City Center. In the hypothetical and theoretical part of this paper, the perception of disability throughout historical process has been examined from a sociological perspective. In addition, concept of universal design, its principles and gravity have also been elaborated. In the part dealing with the case study, outer spaces within Konya City Center have been analyzed with respect to universal design principles and a range of suggestions have been developed.
Resumo:
We consider a natural representation of solutions for Tikhonov functional equations. This will be done by applying the theory of reproducing kernels to the approximate solutions of general bounded linear operator equations (when defined from reproducing kernel Hilbert spaces into general Hilbert spaces), by using the Hilbert-Schmidt property and tensor product of Hilbert spaces. As a concrete case, we shall consider generalized fractional functions formed by the quotient of Bergman functions by Szegö functions considered from the multiplication operators on the Szegö spaces.
Resumo:
Lorsque les aléas naturels se déroulent en catastrophes, les réponses des religieux, de l’Etat, et d’autres acteurs puissants dans une société révèlent à la fois les relations complexes entre ces parties et leur pouvoir dans la production des espaces auxquelles les survivants accèdent. La réponse en cas de catastrophe comprend la création d’espaces post-catastrophes, tels que des centres d’évacuation, des logements de transition et des sites de réinstallation permanente, qui ciblent spécifiquement un sous-ensemble particulier de survivants, et visent à les aider à survivre, à faire face, et à se remettre de la catastrophe. Les acteurs puissants dans une société dirigent les processus de secours, de récupération et de reconstruction sont des acteurs puissants qui cherchent à problématiser et à rendre un problème technique dans des termes qu’ils sont idéalement placés pour aborder à travers une variété d'interventions. Ce projet de recherche vise à répondre à la question: où les survivants d'une catastrophe reconstruisent-ils leurs vies et leurs moyens de subsistance? Il enquête sur un cas spécifique de la migration environnementale dans laquelle des dizaines de milliers d'habitants ont été déplacés de façon permanente et temporaire de leurs résidences habituelles après le typhon Sendong à Cagayan de Oro, Philippines en 2011. La recherche est basée sur des entretiens avec les acteurs puissants et les survivants, des vidéos participatives réalisées par des survivants pauvres urbains, et des activités de cartographie. L’étude se fonde sur la théorie féministe, les études de migration, les études dans la gouvernementalité, la recherche sur les changements de l’environnement planétaire, et les études régionales afin de situer les diverses expériences de la migration dans un contexte géographique et historique. Cette thèse propose une topographie critique dans laquelle les processus et les pratiques de production d’espaces post-catastrophe sont exposés. Parce que l’espace est nécessairement malléable, fluide, et relationnelle en raison de l'évolution constante des activités, des conflits, et des expériences qui se déroulent dans le paysage, une analyse de l'espace doit être formulée en termes de relations sociales qui se produisent dans et au-delà de ses frontières poreuses. En conséquence, cette étude explore comment les relations sociales entre les survivants et les acteurs puissants sont liées à l’exclusion, la gouvernementalité, la mobilité, et la production des espaces, des lieux et des territoires. Il constate que, si les trajectoires de migration de la plupart des survivants ont été confinés à l'intérieur des limites de la ville, les expériences de ces survivants et leur utilisation des espaces urbains sont très différentes. Ces différences peuvent être expliquées par des structures politiques, économiques, et sociales, et par les différences religieuses, économiques, et de genre. En outre, il fait valoir que les espaces post-catastrophe doivent être considérés comme des «espaces d’exclusion» où les fiduciaires exercent une rationalité gouvernementale. C’est-à-dire, les espaces post-catastrophe prétendument inclusives servent à marginaliser davantage les populations vulnérables. Ces espaces offrent aussi des occasions pour les acteurs puissants dans la société philippine d'effectuer des interventions gouvernementales dans lesquelles certaines personnes et les paysages sont simplifiées, rendues lisibles, et améliorés.
Resumo:
We obtain invertibility and Fredholm criteria for the Wiener-Hopf plus Hankel operators acting between variable exponent Lebesgue spaces on the real line. Such characterizations are obtained via the so-called even asymmetric factorization which is applied to the Fourier symbols of the operators under study.
Resumo:
The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.
Resumo:
With the ever-growing amount of connected sensors (IoT), making sense of sensed data becomes even more important. Pervasive computing is a key enabler for sustainable solutions, prominent examples are smart energy systems and decision support systems. A key feature of pervasive systems is situation awareness which allows a system to thoroughly understand its environment. It is based on external interpretation of data and thus relies on expert knowledge. Due to the distinct nature of situations in different domains and applications, the development of situation aware applications remains a complex process. This thesis is concerned with a general framework for situation awareness which simplifies the development of applications. It is based on the Situation Theory Ontology to provide a foundation for situation modelling which allows knowledge reuse. Concepts of the Situation Theory are mapped to the Context Space Theory which is used for situation reasoning. Situation Spaces in the Context Space are automatically generated with the defined knowledge. For the acquisition of sensor data, the IoT standards O-MI/O-DF are integrated into the framework. These allow a peer-to-peer data exchange between data publisher and the proposed framework and thus a platform independent subscription to sensed data. The framework is then applied for a use case to reduce food waste. The use case validates the applicability of the framework and furthermore serves as a showcase for a pervasive system contributing to the sustainability goals. Leading institutions, e.g. the United Nations, stress the need for a more resource efficient society and acknowledge the capability of ICT systems. The use case scenario is based on a smart neighbourhood in which the system recommends the most efficient use of food items through situation awareness to reduce food waste at consumption stage.
Resumo:
Working on the d-torus, we show that Besov spaces Bps(Lp(logL)a) modelled on Zygmund spaces can be described in terms of classical Besov spaces. Several other properties of spaces Bps(Lp(logL)a) are also established. In particular, in the critical case s=d/p, we characterize the embedding of Bpd/p(Lp(logL)a) into the space of continuous functions.
Resumo:
A counterpart of the Mackey–Arens Theorem for the class of locally quasi-convex topological Abelian groups (LQC-groups) was initiated in Chasco et al. (Stud Math 132(3):257–284, 1999). Several authors have been interested in the problems posed there and have done clarifying contributions, although the main question of that source remains open. Some differences between the Mackey Theory for locally convex spaces and for locally quasi-convex groups, stem from the following fact: The supremum of all compatible locally quasi-convex topologies for a topological abelian group G may not coincide with the topology of uniform convergence on the weak quasi-convex compact subsets of the dual groupG∧. Thus, a substantial part of the classical Mackey–Arens Theorem cannot be generalized to LQC-groups. Furthermore, the mentioned fact gives rise to a grading in the property of “being a Mackey group”, as defined and thoroughly studied in Díaz Nieto and Martín-Peinador (Proceedings in Mathematics and Statistics 80:119–144, 2014). At present it is not known—and this is the main open question—if the supremum of all the compatible locally quasi-convex topologies on a topological group is in fact a compatible topology. In the present paper we do a sort of historical review on the Mackey Theory, and we compare it in the two settings of locally convex spaces and of locally quasi-convex groups. We point out some general questions which are still open, under the name of Problems.
Resumo:
Part 14: Interoperability and Integration
Resumo:
MSC 19L41; 55S10.
Resumo:
International audience
Resumo:
Entangled quantum states can be given a separable decomposition if we relax the restriction that the local operators be quantum states. Motivated by the construction of classical simulations and local hidden variable models, we construct `smallest' local sets of operators that achieve this. In other words, given an arbitrary bipartite quantum state we construct convex sets of local operators that allow for a separable decomposition, but that cannot be made smaller while continuing to do so. We then consider two further variants of the problem where the local state spaces are required to contain the local quantum states, and obtain solutions for a variety of cases including a region of pure states around the maximally entangled state. The methods involve calculating certain forms of cross norm. Two of the variants of the problem have a strong relationship to theorems on ensemble decompositions of positive operators, and our results thereby give those theorems an added interpretation. The results generalise those obtained in our previous work on this topic [New J. Phys. 17, 093047 (2015)].
Resumo:
We prove that, given a topological space X, the following conditions are equivalent. (α) X is a Gruenhage space. (β) X has a countable cover by sets of small local diameter (property SLD) by F∩G sets. (γ) X has a separating σ-isolated family M⊂F∩G. (δ) X has a one-to-one continuous map into a metric space which has a σ-isolated base of F∩G sets. Besides, we provide an example which shows Fragmentability ⇏ property SLD ⇏ the space to be Gruenhage.
Resumo:
In this thesis we study weak isometries of Hamming spaces. These are permutations of a Hamming space that preserve some but not necessarily all distances. We wish to find conditions under which a weak isometry is in fact an isometry. This type of problem was first posed by Beckman and Quarles for Rn. In chapter 2 we give definitions pertinent to our research. The 3rd chapter focuses on some known results in this area with special emphasis on papers by V. Krasin as well as S. De Winter and M. Korb who solved this problem for the Boolean cube, that is, the binary Hamming space. We attempted to generalize some of their methods to the non-boolean case. The 4th chapter has our new results and is split into two major contributions. Our first contribution shows if n=p or p < n2, then every weak isometry of Hnq that preserves distance p is an isometry. Our second contribution gives a possible method to check if a weak isometry is an isometry using linear algebra and graph theory.