780 resultados para Primary visual cortex
Resumo:
Purpose: The exact nature of the relationship between Alzheimer’s disease (AD) and primary open angle glaucoma (POAG) is still the subject of debate. One factor attributed to the aetiology of both conditions is vascular dysfunction. This study aimed to investigate the similarities and differences in retinal microvascular function between mild AD patients, early stage POAG patients and healthy controls Methods: Retinal vessel reactivity to flickering light was assessed in 10 AD, 19 POAG and 22 healthy age matched control patients by means of dynamic retinal vessel analysis (DVA, IMEDOS, GmbH, Jena, Germany) according to an established protocol. All patients additionally underwent BP measurements and blood analysis for glucose and lipid metabolism markers Results: AD and POAG patients demonstrated comparable alterations in retinal artery reactivity, in the form of an increased arterial reaction time (RT) to flicker light on the final flicker cycle (p=0.014), which was not replicated in the healthy age and cardiovascular risk matched controls (p>0.05). Furthermore, the sequential changes in RT on progressing from flicker one to flicker three were found to differ between healthy controls and the two disease groups (p=0.001) Conclusions: AD and POAG patients demonstrate comparable signs of vascular dysfunction in their retinal arteries at the early stages of their disease process. These comparable signs may reflect similarities in the pathophysiological processes that occur in the development of both conditions
Resumo:
Corticobasal degeneration is a rare, progressive neurodegenerative disease and a member of the 'parkinsonian' group of disorders, which also includes Parkinson's disease, progressive supranuclear palsy, dementia with Lewy bodies and multiple system atrophy. The most common initial symptom is limb clumsiness, usually affecting one side of the body, with or without accompanying rigidity or tremor. Subsequently, the disease affects gait and there is a slow progression to influence ipsilateral arms and legs. Apraxia and dementia are the most common cortical signs. Corticobasal degeneration can be difficult to distinguish from other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid clinical diagnosis. Typical ocular features include increased latency of saccadic eye movements ipsilateral to the side exhibiting apraxia, impaired smooth pursuit movements and visuo-spatial dysfunction, especially involving spatial rather than object-based tasks. Less typical features include reduction in saccadic velocity, vertical gaze palsy, visual hallucinations, sleep disturbance and an impaired electroretinogram. Aspects of primary vision such as visual acuity and colour vision are usually unaffected. Management of the condition to deal with problems of walking, movement, daily tasks and speech problems is an important aspect of the disease.
Resumo:
Saccadic eye movements rapidly displace the image of the world that is projected onto the retinas. In anticipation of each saccade, many neurons in the visual system shift their receptive fields. This presaccadic change in visual sensitivity, known as remapping, was first documented in the parietal cortex and has been studied in many other brain regions. Remapping requires information about upcoming saccades via corollary discharge. Analyses of neurons in a corollary discharge pathway that targets the frontal eye field (FEF) suggest that remapping may be assembled in the FEF's local microcircuitry. Complementary data from reversible inactivation, neural recording, and modeling studies provide evidence that remapping contributes to transsaccadic continuity of action and perception. Multiple forms of remapping have been reported in the FEF and other brain areas, however, and questions remain about reasons for these differences. In this review of recent progress, we identify three hypotheses that may help to guide further investigations into the structure and function of circuits for remapping.
Resumo:
Neuroimaging studies of episodic memory, or memory of events from our personal past, have predominantly focused their attention on medial temporal lobe (MTL). There is growing acknowledgement however, from the cognitive neuroscience of memory literature, that regions outside the MTL can support episodic memory processes. The medial prefrontal cortex is one such region garnering increasing interest from researchers. Using behavioral and functional magnetic resonance imaging measures, over two studies, this thesis provides evidence of a mnemonic role of the medial PFC. In the first study, participants were scanned while judging the extent to which they agreed or disagreed with the sociopolitical views of unfamiliar individuals. Behavioral tests of associative recognition revealed that participants remembered with high confidence viewpoints previously linked with judgments of strong agreement/disagreement. Neurally, the medial PFC mediated the interaction between high-confidence associative recognition memory and beliefs associated with strong agree/disagree judgments. In an effort to generalize this finding to well-established associative information, in the second study, we investigated associative recognition memory for real-world concepts. Object-scene pairs congruent or incongruent with a preexisting schema were presented to participants in a cued-recall paradigm. Behavioral tests of conceptual and perceptual recognition revealed memory enhancements arising from strong resonance between presented pairs and preexisting schemas. Neurally, the medial PFC tracked increases in visual recall of schema-congruent pairs whereas the MTL tracked increases in visual recall of schema-incongruent pairs. Additionally, ventral areas of the medial PFC tracked conceptual components of visual recall specifically for schema-congruent pairs. These findings are consistent with a recent theoretical proposal of medial PFC contributions to memory for schema-related content. Collectively, these studies provide evidence of a role for the medial PFC in associative recognition memory persisting for associative information deployed in our daily social interactions and for those associations formed over multiple learning episodes. Additionally, this set of findings advance our understanding of the cognitive contributions of the medial PFC beyond its canonical role in processes underlying social cognition.
Resumo:
Concept maps are a technique used to obtain a visual representation of a person's ideas about a concept or a set of related concepts. Specifically, in this paper, through a qualitative methodology, we analyze the concept maps proposed by 52 groups of teacher training students in order to find out the characteristics of the maps and the degree of adequacy of the contents with regard to the teaching of human nutrition in the 3rd cycle of primary education. The participants were enrolled in the Teacher Training Degree majoring in Primary Education, and the data collection was carried out through a training activity under the theme of what to teach about Science in Primary School? The results show that the maps are a useful tool for working in teacher education as they allow organizing, synthesizing, and communicating what students know. Moreover, through this work, it has been possible to see that future teachers have acceptable skills for representing the concepts/ideas in a concept map, although the level of adequacy of concepts/ideas about human nutrition and its relations is usually medium or low. These results are a wake-up call for teacher training, both initial and ongoing, because they shows the inability to change priorities as far as the selection of content is concerned.
Resumo:
Background
Primary angle-closure glaucoma is a leading cause of irreversible blindness worldwide. In early-stage disease, intraocular pressure is raised without visual loss. Because the crystalline lens has a major mechanistic role, lens extraction might be a useful initial treatment.
Methods
From Jan 8, 2009, to Dec 28, 2011, we enrolled patients from 30 hospital eye services in five countries. Randomisation was done by a web-based application. Patients were assigned to undergo clear-lens extraction or receive standard care with laser peripheral iridotomy and topical medical treatment. Eligible patients were aged 50 years or older, did not have cataracts, and had newly diagnosed primary angle closure with intraocular pressure 30 mm Hg or greater or primary angle-closure glaucoma. The co-primary endpoints were patient-reported health status, intraocular pressure, and incremental cost-effectiveness ratio per quality-adjusted life-year gained 36 months after treatment. Analysis was by intention to treat. This study is registered, number ISRCTN44464607.
Findings
Of 419 participants enrolled, 155 had primary angle closure and 263 primary angle-closure glaucoma. 208 were assigned to clear-lens extraction and 211 to standard care, of whom 351 (84%) had complete data on health status and 366 (87%) on intraocular pressure. The mean health status score (0·87 [SD 0·12]), assessed with the European Quality of Life-5 Dimensions questionnaire, was 0·052 higher (95% CI 0·015–0·088, p=0·005) and mean intraocular pressure (16·6 [SD 3·5] mm Hg) 1·18 mm Hg lower (95% CI –1·99 to –0·38, p=0·004) after clear-lens extraction than after standard care. The incremental cost-effectiveness ratio was £14 284 for initial lens extraction versus standard care. Irreversible loss of vision occurred in one participant who underwent clear-lens extraction and three who received standard care. No patients had serious adverse events.
Interpretation
Clear-lens extraction showed greater efficacy and was more cost-effective than laser peripheral iridotomy, and should be considered as an option for first-line treatment.
Resumo:
It has been recently shownthat localfield potentials (LFPs)fromthe auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Pseudoneglect represents the tendency for healthy individuals to show a slight but consistent bias in favour of stimuli appearing in the left visual field. The bias is often measured using variants of the line bisection task. An accurate model of the functional architecture of the visuospatial attention system must account for this widely observed phenomenon, as well as for modulation of the direction and magnitude of the bias within individuals by a variety of factors relating to the state of the participant and/or stimulus characteristics. To date, the neural correlates of pseudoneglect remain relatively unmapped. In the current thesis, I employed a combination of psychophysical measurements, electroencephalography (EEG) recording and transcranial direct current stimulation (tDCS) in an attempt to probe the neural generator(s) of pseudoneglect. In particular, I wished to utilise and investigate some of the factors known to modulate the bias (including age, time-on-task and the length of the to-be-bisected line) in order to identify neural processes and activity that are necessary and sufficient for the lateralized bias to arise. Across four experiments utilising a computerized version of a perceptual line bisection task, pseudoneglect was consistently observed at baseline in healthy young participants. However, decreased line length (experiments 1, 2 and 3), time-on-task (experiment 1) and healthy aging (experiment 3) were all found to modulate the bias. Specifically, all three modulations induced a rightward shift in subjective midpoint estimation. Additionally, the line length and time-on-task effects (experiment 1) and the line length and aging effects (experiment 3) were found to have additive relationships. In experiment 2, EEG measurements revealed the line length effect to be reflected in neural activity 100 – 200ms post-stimulus onset over source estimated posterior regions of the right hemisphere (RH: temporo-parietal junction (TPJ)). Long lines induced a hemispheric asymmetry in processing (in favour of the RH) during this period that was absent in short lines. In experiment 4, bi-parietal tDCS (Left Anodal/Right Cathodal) induced a polarity-specific rightward shift in bias, highlighting the crucial role played by parietal cortex in the genesis of pseudoneglect. The opposite polarity (Left Cathodal/Right Anodal) did not induce a change in bias. The combined results from the four experiments of the current thesis provide converging evidence as to the crucial role played by the RH in the genesis of pseudoneglect and in the processing of visual input more generally. The reduction in pseudoneglect with decreased line length, increased time-on-task and healthy aging may be explained by a reduction in RH function, and hence contribution to task processing, induced by each of these modulations. I discuss how behavioural and neuroimaging studies of pseudoneglect (and its various modulators) can provide empirical data upon which accurate formal models of visuospatial attention networks may be based and further tested.
Resumo:
It has been recently shownthat localfield potentials (LFPs)fromthe auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.
Resumo:
Objective Primary open angle glaucoma (POAG) is the most common type of glaucoma in Africa. We carried out a study to determine the clinical presentation pattern of patients with primary open angle glaucoma (POAG) at a tertiary hospital in Malawi. Design A cross-sectional study Setting Lions Sight First Eye Hospital—a major referral and teaching state eye hospital in Blantyre, Malawi Subjects Study participants were newly diagnosed POAG patients at specialist eye clinic during study period. Results A total of 60 POAG patients were recruited into the study. The mean age was 58.7 years (SD= 16.6, range 18 - 86). There were more male (44, 73.3%) than female (16, 27.7%) patients. The majority of patients (73%) presented one year after onset of visual symptoms. Twenty-six patients (43%) had unilateral blindness (visual acuity < 3/60; WHO classification), while nine patients (15%) presented with bilateral blindness. A vertical cup-to-disc ratio (CDR) of 0.8 or worse was seen in 92 eyes (79%). The mean intraocular pressure (IOP) reading was 35.5 mmHg (SD 13.30). Of the thirty-three eyes that successfully underwent visual field analysis, very advanced defects were recorded in 12 eyes (36%). Conclusion This study demonstrates delayed presentation and male predominance among POAG patients at a tertiary eye hospital in Malawi. Glaucoma intervention programmes should aim at identifying patients with treatable glaucoma with particular attention to women.
Resumo:
Purpose: To examine the effectiveness of Resina Draconis capsules in the treatment of primary dysmenorrhoea. Methods: In total, 324 patients with primary dysmenorrhoea were randomly allocated to three groups based on treatment with capsules containing Resina Draconis, Leonurus japonicus Houtt., or a placebo for 3 months. The patients’ visual analogue scale (VAS) scores and dysmenorrhoea symptoms were evaluated. Results: VAS scores of the Resina Draconis, L. japonicus, and placebo groups decreased from 7.31 ± 1.36, 7.12 ± 1.65, and 7.25 ± 1.47 to 3.35 ± 1.43, 5.27 ± 1.24, and 7.08 ± 2.10, respectively. The change was greatest for the Resina Draconis group (p < 0.01). The incidence of symptoms associated with dysmenorrhoea decreased in all three groups, but the change was greatest for Resina Draconis group (p < 0.01). Overall, Resina Draconis was more effective than L. japonicus (94.40 vs. 72.20 %) (p < 0.05). Conclusion: Resina Draconis capsules are effective in relieving primary dysmenorrhoea and lowering the incidence of symptoms associated with dysmenorrhoea.
Resumo:
El presente trabajo tuvo como objetivo evaluar la existencia de la relación entre la atrofia cortical difusa objetivada por neuroimagenes cerebrales y desempeños cognitivos determinados mediante la aplicación de pruebas neuropsicológicas que evalúan memoria de trabajo, razonamiento simbólico verbal y memoria anterógrada declarativa. Participaron 114 sujetos reclutados en el Hospital Universitario Mayor Méderi de la ciudad de Bogotá mediante muestreo de conveniencia. Los resultados arrojaron diferencias significativas entre los dos grupos (pacientes con diagnóstico de atrofia cortical difusa y pacientes con neuroimagenes interpretadas como dentro de los límites normales) en todas las pruebas neuropsicológicas aplicadas. Respecto a las variables demográficas se pudo observar que el grado de escolaridad contribuye como factor neuroprotector de un posible deterioro cognitivo. Tales hallazgos son importantes para determinar protocoles tempranos de detección de posible instalación de enfermedades neurodegenerativas primarias.