882 resultados para Portfolio manager
Resumo:
Due to the demand for better and deeper analysis in sports, organizations (both professional teams and broadcasters) are looking to use spatiotemporal data in the form of player tracking information to obtain an advantage over their competitors. However, due to the large volume of data, its unstructured nature, and lack of associated team activity labels (e.g. strategic/tactical), effective and efficient strategies to deal with such data have yet to be deployed. A bottleneck restricting such solutions is the lack of a suitable representation (i.e. ordering of players) which is immune to the potentially infinite number of possible permutations of player orderings, in addition to the high dimensionality of temporal signal (e.g. a game of soccer last for 90 mins). Leveraging a recent method which utilizes a "role-representation", as well as a feature reduction strategy that uses a spatiotemporal bilinear basis model to form a compact spatiotemporal representation. Using this representation, we find the most likely formation patterns of a team associated with match events across nearly 14 hours of continuous player and ball tracking data in soccer. Additionally, we show that we can accurately segment a match into distinct game phases and detect highlights. (i.e. shots, corners, free-kicks, etc) completely automatically using a decision-tree formulation.
Resumo:
Over the past decade, vision-based tracking systems have been successfully deployed in professional sports such as tennis and cricket for enhanced broadcast visualizations as well as aiding umpiring decisions. Despite the high-level of accuracy of the tracking systems and the sheer volume of spatiotemporal data they generate, the use of this high quality data for quantitative player performance and prediction has been lacking. In this paper, we present a method which predicts the location of a future shot based on the spatiotemporal parameters of the incoming shots (i.e. shot speed, location, angle and feet location) from such a vision system. Having the ability to accurately predict future short-term events has enormous implications in the area of automatic sports broadcasting in addition to coaching and commentary domains. Using Hawk-Eye data from the 2012 Australian Open Men's draw, we utilize a Dynamic Bayesian Network to model player behaviors and use an online model adaptation method to match the player's behavior to enhance shot predictability. To show the utility of our approach, we analyze the shot predictability of the top 3 players seeds in the tournament (Djokovic, Federer and Nadal) as they played the most amounts of games.
Resumo:
Efficient and effective feature detection and representation is an important consideration when processing videos, and a large number of applications such as motion analysis, 3D scene understanding, tracking etc. depend on this. Amongst several feature description methods, local features are becoming increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational complexity, their performance is still too limited for real world applications. Furthermore, rapid increases in the uptake of mobile devices has increased the demand for algorithms that can run with reduced memory and computational requirements. In this paper we propose a semi binary based feature detectordescriptor based on the BRISK detector, which can detect and represent videos with significantly reduced computational requirements, while achieving comparable performance to the state of the art spatio-temporal feature descriptors. First, the BRISK feature detector is applied on a frame by frame basis to detect interest points, then the detected key points are compared against consecutive frames for significant motion. Key points with significant motion are encoded with the BRISK descriptor in the spatial domain and Motion Boundary Histogram in the temporal domain. This descriptor is not only lightweight but also has lower memory requirements because of the binary nature of the BRISK descriptor, allowing the possibility of applications using hand held devices.We evaluate the combination of detectordescriptor performance in the context of action classification with a standard, popular bag-of-features with SVM framework. Experiments are carried out on two popular datasets with varying complexity and we demonstrate comparable performance with other descriptors with reduced computational complexity.
Resumo:
This paper presents some theoretical and interdisciplinary perspectives that might inform the design and development of information and communications technology (ICT) tools to support reflective inquiry during e-learning. The role of why-questioning provides the focus of discussion and is guided by literature that spans critical thinking, inquiry-based and problem-based learning, storytelling, sense-making, and reflective practice, as well as knowledge management, information science, computational linguistics and automated question generation. It is argued that there exists broad scope for the development of ICT scaffolding targeted at supporting reflective inquiry duringe-learning. Evidence suggests that wiki-based learning tasks, digital storytelling, and e-portfolio tools demonstrate the value of accommodating reflective practice and explanatory content in supporting learning; however, it is also argued that the scope for ICT tools that directly support why-questioning as a key aspect of reflective inquiry is a frontier ready for development.
Resumo:
The news media industry has changed dramatically in the last 10 to 20 years into a global business with ever increasing attention being devoted to entertainment and celebrity. There is also a growing reliance on images produced by citizens (citizen photojournalism) by media outlets and publishers. It is widely acknowledged this has shrunk publication opportunities for professional photographers undertaking editorial projects. As a result, photographers are increasingly relying on non-government organisations (NGOs) to gain access to photographing issues and events in developing countries and to expand their economic and portfolio opportunities. This increase of photographers working for and alongside NGOs has given rise to a new genre of editorial photography I call NGO Reportage. By way of a case study, an exploration of this new genre reveals important issues for photographers working alongside NGO’s and examines the constructed narratives of images contained within these emerging practices.
Resumo:
A new community and communication type of social networks - online dating - are gaining momentum. With many people joining in the dating network, users become overwhelmed by choices for an ideal partner. A solution to this problem is providing users with partners recommendation based on their interests and activities. Traditional recommendation methods ignore the users’ needs and provide recommendations equally to all users. In this paper, we propose a recommendation approach that employs different recommendation strategies to different groups of members. A segmentation method using the Gaussian Mixture Model (GMM) is proposed to customize users’ needs. Then a targeted recommendation strategy is applied to each identified segment. Empirical results show that the proposed approach outperforms several existing recommendation methods.
Resumo:
The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.
Resumo:
Most recommender systems attempt to use collaborative filtering, content-based filtering or hybrid approach to recommend items to new users. Collaborative filtering recommends items to new users based on their similar neighbours, and content-based filtering approach tries to recommend items that are similar to new users' profiles. The fundamental issues include how to profile new users, and how to deal with the over-specialization in content-based recommender systems. Indeed, the terms used to describe items can be formed as a concept hierarchy. Therefore, we aim to describe user profiles or information needs by using concepts vectors. This paper presents a new method to acquire user information needs, which allows new users to describe their preferences on a concept hierarchy rather than rating items. It also develops a new ranking function to recommend items to new users based on their information needs. The proposed approach is evaluated on Amazon book datasets. The experimental results demonstrate that the proposed approach can largely improve the effectiveness of recommender systems.
Resumo:
Different reputation models are used in the web in order to generate reputation values for products using uses' review data. Most of the current reputation models use review ratings and neglect users' textual reviews, because it is more difficult to process. However, we argue that the overall reputation score for an item does not reflect the actual reputation for all of its features. And that's why the use of users' textual reviews is necessary. In our work we introduce a new reputation model that defines a new aggregation method for users' extracted opinions about products' features from users' text. Our model uses features ontology in order to define general features and sub-features of a product. It also reflects the frequencies of positive and negative opinions. We provide a case study to show how our results compare with other reputation models.
Resumo:
Background Globally, alcohol-related injuries cause millions of deaths and huge economic loss each year . The incidence of facial (jawbone) fractures in the Northern Territory of Australia is second only to Greenland, due to a strong involvement of alcohol in its aetiology, and high levels of alcohol consumption. The highest incidences of alcohol-related trauma in the Territory are observed amongst patients in the Maxillofacial Surgery Unit of the Royal Darwin Hospital. Accordingly, this project aims to introduce screening and brief interventions into this unit, with the aims of changing health service provider practice, improving access to care, and improving patient outcomes. Methods Establishment of Project Governance: The project governance team includes a project manager, project leader, an Indigenous Reference Group (IRG) and an Expert Reference Group (ERG). Development of a best practice pathway: PACT project researchers collaborate with clinical staff to develop a best practice pathway suited to the setting of the surgical unit. The pathway provides clear guidelines for screening, assessment, intervention and referral. Implementation: The developed pathway is introduced to the unit through staff training workshops and associate resources and adapted in response to staff feedback. Evaluation: File audits, post workshop questionnaires and semi-structured interviews are administered. Discussion This project allows direct transfer of research findings into clinical practice and can inform future hospital-based injury prevention strategies.
Resumo:
Agent-based modelling (ABM), like other modelling techniques, is used to answer specific questions from real world systems that could otherwise be expensive or impractical. Its recent gain in popularity can be attributed to some degree to its capacity to use information at a fine level of detail of the system, both geographically and temporally, and generate information at a higher level, where emerging patterns can be observed. This technique is data-intensive, as explicit data at a fine level of detail is used and it is computer-intensive as many interactions between agents, which can learn and have a goal, are required. With the growing availability of data and the increase in computer power, these concerns are however fading. Nonetheless, being able to update or extend the model as more information becomes available can become problematic, because of the tight coupling of the agents and their dependence on the data, especially when modelling very large systems. One large system to which ABM is currently applied is the electricity distribution where thousands of agents representing the network and the consumers’ behaviours are interacting with one another. A framework that aims at answering a range of questions regarding the potential evolution of the grid has been developed and is presented here. It uses agent-based modelling to represent the engineering infrastructure of the distribution network and has been built with flexibility and extensibility in mind. What distinguishes the method presented here from the usual ABMs is that this ABM has been developed in a compositional manner. This encompasses not only the software tool, which core is named MODAM (MODular Agent-based Model) but the model itself. Using such approach enables the model to be extended as more information becomes available or modified as the electricity system evolves, leading to an adaptable model. Two well-known modularity principles in the software engineering domain are information hiding and separation of concerns. These principles were used to develop the agent-based model on top of OSGi and Eclipse plugins which have good support for modularity. Information regarding the model entities was separated into a) assets which describe the entities’ physical characteristics, and b) agents which describe their behaviour according to their goal and previous learning experiences. This approach diverges from the traditional approach where both aspects are often conflated. It has many advantages in terms of reusability of one or the other aspect for different purposes as well as composability when building simulations. For example, the way an asset is used on a network can greatly vary while its physical characteristics are the same – this is the case for two identical battery systems which usage will vary depending on the purpose of their installation. While any battery can be described by its physical properties (e.g. capacity, lifetime, and depth of discharge), its behaviour will vary depending on who is using it and what their aim is. The model is populated using data describing both aspects (physical characteristics and behaviour) and can be updated as required depending on what simulation is to be run. For example, data can be used to describe the environment to which the agents respond to – e.g. weather for solar panels, or to describe the assets and their relation to one another – e.g. the network assets. Finally, when running a simulation, MODAM calls on its module manager that coordinates the different plugins, automates the creation of the assets and agents using factories, and schedules their execution which can be done sequentially or in parallel for faster execution. Building agent-based models in this way has proven fast when adding new complex behaviours, as well as new types of assets. Simulations have been run to understand the potential impact of changes on the network in terms of assets (e.g. installation of decentralised generators) or behaviours (e.g. response to different management aims). While this platform has been developed within the context of a project focussing on the electricity domain, the core of the software, MODAM, can be extended to other domains such as transport which is part of future work with the addition of electric vehicles.
Resumo:
Global awareness for cleaner and renewable energy is transforming the electricity sector at many levels. New technologies are being increasingly integrated into the electricity grid at high, medium and low voltage levels, new taxes on carbon emissions are being introduced and individuals can now produce electricity, mainly through rooftop photovoltaic (PV) systems. While leading to improvements, these changes also introduce challenges, and a question that often rises is ‘how can we manage this constantly evolving grid?’ The Queensland Government and Ergon Energy, one of the two Queensland distribution companies, have partnered with some Australian and German universities on a project to answer this question in a holistic manner. The project investigates the impact the integration of renewables and other new technologies has on the physical structure of the grid, and how this evolving system can be managed in a sustainable and economical manner. To aid understanding of what the future might bring, a software platform has been developed that integrates two modelling techniques: agent-based modelling (ABM) to capture the characteristics of the different system units accurately and dynamically, and particle swarm optimization (PSO) to find the most economical mix of network extension and integration of distributed generation over long periods of time. Using data from Ergon Energy, two types of networks (3 phase, and Single Wired Earth Return or SWER) have been modelled; three-phase networks are usually used in dense networks such as urban areas, while SWER networks are widely used in rural Queensland. Simulations can be performed on these networks to identify the required upgrades, following a three-step process: a) what is already in place and how it performs under current and future loads, b) what can be done to manage it and plan the future grid and c) how these upgrades/new installations will perform over time. The number of small-scale distributed generators, e.g. PV and battery, is now sufficient (and expected to increase) to impact the operation of the grid, which in turn needs to be considered by the distribution network manager when planning for upgrades and/or installations to stay within regulatory limits. Different scenarios can be simulated, with different levels of distributed generation, in-place as well as expected, so that a large number of options can be assessed (Step a). Once the location, sizing and timing of assets upgrade and/or installation are found using optimisation techniques (Step b), it is possible to assess the adequacy of their daily performance using agent-based modelling (Step c). One distinguishing feature of this software is that it is possible to analyse a whole area at once, while still having a tailored solution for each of the sub-areas. To illustrate this, using the impact of battery and PV can have on the two types of networks mentioned above, three design conditions can be identified (amongst others): · Urban conditions o Feeders that have a low take-up of solar generators, may benefit from adding solar panels o Feeders that need voltage support at specific times, may be assisted by installing batteries · Rural conditions - SWER network o Feeders that need voltage support as well as peak lopping may benefit from both battery and solar panel installations. This small example demonstrates that no single solution can be applied across all three areas, and there is a need to be selective in which one is applied to each branch of the network. This is currently the function of the engineer who can define various scenarios against a configuration, test them and iterate towards an appropriate solution. Future work will focus on increasing the level of automation in identifying areas where particular solutions are applicable.
Resumo:
Joint venture design teams are formed to combine resources and expertise in order to secure multi-discipline engineering design services on major projects. Bringing together resources from two ordinarily competing companies to form one joint team is however challenging as each parent company brings to the project its own organisational culture, processes and team attitudes. This study examined the factors that impact on forming a successful joint venture project team. Three critical areas were identified from an extensive literature review; Joint Venture Arrangements, Parent Companies and Forming the Team; and a survey was conducted with professionals who have worked in joint venture project teams in the Australian building industry in order to identify factors that affected successful joint venture team formation, and the common lessons learnt. This study reinforced the importance of three key criteria - trust, commitment and compatibility - for partner alignment. The results also identified four key lessons learnt which included; selecting the right resources, enabling a collaborative working environment by way of project office, implementing an independent Joint Venture Manager, and allocating work which is best for project with fees reflecting risk where risk is disproportionate.
Resumo:
The objective of this paper is to explore the relationship between dynamic capabilities and different types of online innovations. Building on qualitative data from the publishing industry, our analysis revealed that companies that had relatively strong dynamic capabilities in all three areas (sensing, seizing and reconfiguration) seem to produce innovations that combine their existing capabilities on either the market or the technology dimension with new capabilities on the other dimension thus resulting in niche creation and revolutionary type innovations. Correspondingly, companies with a weaker or more one-sided set of dynamic capabilities seem to produce more radical innovations requiring both new market and technological capabilities. The study therefore provides an empirical contribution to the emerging work on dynamic capabilities through its in-depth investigation of the capabilities of the four case firms, and by mapping the patterns between the firm's portfolio of dynamic capabilities and innovation outcomes.
Resumo:
How is your academic institution structured? If you work within a university, then no doubt you are familiar with the use of faculties or perhaps colleges. What about departments or schools? Whatever names or structures are employed, how would you describe the working relationship between academics and professional staff members? As a research scientist and academic over the last twenty years, my appointments have almost always been made through academic departments or schools. In each case, the academic unit has been led by a senior academic manager, such as a chair or head, supported by a dedicated team of professional staff. More recently, however, I have had the opportunity of leading an academic discipline and the experience has led me to reflect more broadly about leadership styles and academic structures within the Australian higher education sector. The written record of this reflection was published last year in the Australian Universities Review (Harkin and Healy, 2013), but I’m pleased to be able to provide a brief synopsis here for the readership of Insights.