859 resultados para Motor skill level
Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks
Resumo:
Computational neuroscience aims to elucidate the mechanisms of neural information processing and population dynamics, through a methodology of incorporating biological data into complex mathematical models. Existing simulation environments model at a particular level of detail; none allow a multi-level approach to neural modelling. Moreover, most are not engineered to produce compute-efficient solutions, an important issue because sufficient processing power is a major impediment in the field. This project aims to apply modern software engineering techniques to create a flexible high performance neural modelling environment, which will allow rigorous exploration of model parameter effects, and modelling at multiple levels of abstraction.
Resumo:
Neu-Model, an ongoing project aimed at developing a neural simulation environment that is extremely computationally powerful and flexible, is described. It is shown that the use of good Software Engineering techniques in Neu-Model’s design and implementation is resulting in a high performance system that is powerful and flexible enough to allow rigorous exploration of brain function at a variety of conceptual levels.
Resumo:
Intelligent Transport Systems (ITS) have the potential to substantially reduce the number of crashes caused by human errors at railway levels crossings. Such systems, however, will only exert an influence on driving behaviour if they are accepted by the driver. This study aimed at assessing driver acceptance of different ITS interventions designed to enhance driver behaviour at railway crossings. Fifty eight participants, divided into three groups, took part in a driving simulator study in which three ITS devices were tested: an in-vehicle visual ITS, an in-vehicle audio ITS, and an on-road valet system. Driver acceptance of each ITS intervention was assessed in a questionnaire guided by the Technology Acceptance Model and the Theory of Planned Behaviour. Overall, results indicated that the strongest intentions to use the ITS devices belonged to participants exposed to the road-based valet system at passive crossings. The utility of both models in explaining drivers’ intention to use the systems is discussed, with results showing greater support for the Theory of Planned Behaviour. Directions for future studies, along with strategies that target attitudes and subjective norms to increase drivers’ behavioural intentions, are also discussed.
Resumo:
Porosity is one of the key parameters of the macroscopic structure of porous media, generally defined as the ratio of the free spaces occupied (by the volume of air) within the material to the total volume of the material. Porosity is determined by measuring skeletal volume and the envelope volume. Solid displacement method is one of the inexpensive and easy methods to determine the envelope volume of a sample with an irregular shape. In this method, generally glass beads are used as a solid due to their uniform size, compactness and fluidity properties. The smaller size of the glass beads means that they enter into the open pores which have a larger diameter than the glass beads. Although extensive research has been carried out on porosity determination using displacement method, no study exists which adequately reports micro-level observation of the sample during measurement. This study set out with the aim of assessing the accuracy of solid displacement method of bulk density measurement of dried foods by micro-level observation. Solid displacement method of porosity determination was conducted using a cylindrical vial (cylindrical plastic container) and 57 µm glass beads in order to measure the bulk density of apple slices at different moisture contents. A scanning electron microscope (SEM), a profilometer and ImageJ software were used to investigate the penetration of glass beads into the surface pores during the determination of the porosity of dried food. A helium pycnometer was used to measure the particle density of the sample. Results show that a significant number of pores were large enough to allow the glass beads to enter into the pores, thereby causing some erroneous results. It was also found that coating the dried sample with appropriate coating material prior to measurement can resolve this problem.
Resumo:
The problem of collisions between road users and trains at rail level crossings (RLXs) remains resistant to current countermeasures. One factor underpinning these collisions is poor Situation Awareness (SA) on behalf of the road user involved (i.e. not being aware of an approaching train). Although this is a potential threat at any RLX, the factors influencing SA may differ depending on whether the RLX is located in a rural or urban road environment. Despite this, there has been no empirical investigation regarding how road user SA might differ across distinct RLX environments. This knowledge is needed to establish the extent to which a uniform approach to RLX design and safety is acceptable. The aim of this paper is to investigate the differences in driver SA at rural versus urban RLXs. We present analyses of driver SA in both rural and urban RLX environments based on two recent on-road studies undertaken in Victoria, Melbourne. The findings demonstrate that driver SA is markedly different at rural and urban RLXs, and also that poor SA regarding approaching trains may be caused by different factors. The implications for RLX design and safety are discussed.
Resumo:
The study examined the health-related behaviours of Saudi people following a recent cardiac event and identified the factors that influence these behaviours using McLeroy et al.'s (1988) Ecological Model of Health Behaviours as a guiding framework. The study was one of the first in Saudi Arabia to examine the health-related behaviours of Saudi people following a recent cardiac event. The study findings emphasise the importance of a program that integrates secondary prevention practices, educational approaches and targeted supportive services in cardiac care in Saudi Arabia.
Resumo:
Many drivers and non-cyclists perceive cycling as an extremely risky activity with women in particular being concerned about the risk of injury. The low rates of cycling participation by women pose a threat to the achievement of government targets for cycling participation and restrict the potential transport, health and environmental benefits that increased levels of cycling could provide. This study seeks to extend earlier research in gender and cycling by comparing the risks perceived by female and male cyclists and drivers in specific on-road situations while accounting for other potentially gender-related factors such as travel patterns and experience, perceived skill, and risk taking behaviors. In an online survey, 444 regular cyclists and 151 (non-cyclist) car drivers rated the level of risk in six situations: Failing to yield; Going through a red light; Not signaling when turning; Swerving; Tailgating; and Not checking traffic. The study found that the higher levels of risk perceived by women are not completely accounted for by differences in cycling patterns or perceptions of skill. Compared to their male counterparts, female cyclists and car drivers had similarly elevated perceptions of risk suggesting that these gender differences are not specific to cycling, but reflect wider differences in risk perception. Not all of the gender differences were consistent across cyclists and drivers. Higher levels of perceived skill were evident for male cyclists but not for male car drivers. Further research is needed to explore the robustness and interpretation of this finding.
Resumo:
This paper presents an improved field weakening algorithm for synchronous reluctance motor (RSMs) drives. The proposed algorithm is robust to the variations in the machine d- and q-axes inductances. The transition between the maximum torque per ampere (MTPA), current and voltage limits as well as the maximum torque per flux (MTPF) trajectories is smooth. The proposed technique is combined with the direct torque control method to attain a high performance drive in the field weakening region. Simulation and experimental results are supplemented to verify the effectiveness of the proposed approach.
Resumo:
Dried plant food products are increasing in demand in the consumer market, leading to continuing research to develop better products and processing techniques. Plant materials are porous structures, which undergo large deformations during drying. For any given food material, porosity and other cellular parameters have a direct influence on the level of shrinkage and deformation characteristics during drying, which involve complex mechanisms. In order to better understand such mechanisms and their interrelationships, numerical modelling can be used as a tool. In contrast to conventional grid-based modelling techniques, it is considered that meshfree methods may have a higher potential for modelling large deformations of multiphase problem domains. This work uses a meshfree based microscale plant tissue drying model, which was recently developed by the authors. Here, the effects of porosity have been newly accounted for in the model with the objective of studying porosity development during drying and its influence on shrinkage at the cellular level. For simplicity, only open pores are modelled and in order to investigate the influence of different cellular parameters, both apple and grape tissues were used in the study. The simulation results indicated that the porosity negatively influences shrinkage during drying and the porosity decreases as the moisture content reduces (when open pores are considered). Also, there is a clear difference in the deformations of cells, tissues and pores, which is mainly influenced by the cell wall contraction effects during drying.