901 resultados para Magnetic Resonance imaging(MRI)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic Resonance Imaging was used to study changes in the crystalline lens and ciliary body with accommodation and aging. Monocular images were obtained in 15 young (19-29 years) and 15 older (60-70 years) emmetropes when viewing at far (6m) and at individual near points (14.5 to 20.9 cm) in the younger group. With accommodation, lens thickness increased (mean±95% CI: 0.33±0.06mm) by a similar magnitude to the decrease in anterior chamber depth (0.31±0.07mm) and equatorial diameter (0.32±0.04mm) with a decrease in the radius of curvature of the posterior lens surface (0.58±0.30mm). Anterior lens surface shape could not be determined due to the overlapping region with the iris. Ciliary ring diameter decreased (0.44±0.17mm) with no decrease in circumlental space or forward ciliary body movement. With aging, lens thickness increased (mean±95% CI: 0.97±0.24mm) similar in magnitude to the sum of the decrease in anterior chamber depth (0.45±0.21mm) and increase in anterior segment depth (0.52±0.23mm). Equatorial lens diameter increased (0.28±0.23mm) with no change in the posterior lens surface radius of curvature. Ciliary ring diameter decreased (0.57±0.41mm) with reduced circumlental space (0.43±0.15mm) and no forward ciliary body movement. Accommodative changes support the Helmholtz theory of accommodation including an increase in posterior lens surface curvature. Certain aspects of aging changes mimic accommodation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Adolescent idiopathic scoliosis is a complex three-dimensional deformity, involving a lateral deformity in the coronal plane and axial rotation of the vertebrae in the transverse plane. Gravitational loading plays an important biomechanical role in governing the coronal deformity, however, less is known about how they influence the axial deformity. This study investigates the change in three-dimensional deformity of a series of scoliosis patients due to compressive axial loading. Methods: Magnetic resonance imaging scans were obtained and coronal deformity (measured using the coronal Cobb angle) and axial rotations measured for a group of 18 scoliosis patients (Mean major Cobb angle was 43.4 o). Each patient was scanned in an unloaded and loaded condition while compressive loads equivalent to 50% body mass were applied using a custom developed compressive device. Findings: The mean increase in major Cobb angle due to compressive loading was 7.4 o (SD 3.5 o). The most axially rotated vertebra was observed at the apex of the structural curve and the largest average intravertebral rotations were observed toward the limits of the coronal deformity. A level-wise comparison showed no significant difference between the average loaded and unloaded vertebral axial rotations (intra-observer error = 2.56 o) or intravertebral rotations at each spinal level. Interpretation: This study suggests that the biomechanical effects of axial loading primarily influence the coronal deformity, with no significant change in vertebral axial rotation or intravertebral rotation observed between the unloaded and loaded condition. However, the magnitude of changes in vertebral rotation with compressive loading may have been too small to detect given the resolution of the current technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. MATERIALS AND METHODS Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s2 ) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. RESULTS The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 +/- 0.88 sec). CONCLUSION The hemodynamic contribution to DfMRI may increase with the use of block designs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical evidence suggests impaired facial emotion recognition in schizophrenia. However, the nature of this deficit is the subject of ongoing research. The current study tested the hypothesis that a generalized deficit at an early stage of face-specific processing (i.e. putatively subserved by the fusiform gyrus) accounts for impaired facial emotion recognition in schizophrenia as opposed to the Negative Emotion-specific Deficit Model, which suggests impaired facial information processing at subsequent stages. Event-related potentials (ERPs) were recorded from 11 schizophrenia patients and 15 matched controls while performing a gender discrimination and a facial emotion recognition task. Significant reduction of the face-specific vertex positive potential (VPP) at a peak latency of 165 ms was confirmed in schizophrenia subjects whereas their early visual processing, as indexed by P1, was found to be intact. Attenuated VPP was found to correlate with subsequent P3 amplitude reduction and to predict accuracy when performing a facial emotion discrimination task. A subset of ten schizophrenia patients and ten matched healthy control subjects also performed similar tasks in the magnetic resonance imaging scanner. Patients showed reduced blood oxygenation level-dependent (BOLD) activation in the fusiform, inferior frontal, middle temporal and middle occipital gyrus as well as in the amygdala. Correlation analyses revealed that VPP and the subsequent P3a ERP components predict fusiform gyrus BOLD activation. These results suggest that problems in facial affect recognition in schizophrenia may represent flow-on effects of a generalized deficit in early visual processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its three-dimensional folding pattern, the human neocortex; poses a challenge for accurate co-registration of grouped functional; brain imaging data. The present study addressed this problem by; employing three-dimensional continuum-mechanical image-warping; techniques to derive average anatomical representations for coregistration; of functional magnetic resonance brain imaging data; obtained from 10 male first-episode schizophrenia patients and 10 age-matched; male healthy volunteers while they performed a version of the; Tower of London task. This novel technique produced an equivalent; representation of blood oxygenation level dependent (BOLD) response; across hemispheres, cortical regions, and groups, respectively, when; compared to intensity average co-registration, using a deformable; Brodmann area atlas as anatomical reference. Somewhat closer; association of Brodmann area boundaries with primary visual and; auditory areas was evident using the gyral pattern average model.; Statistically-thresholded BOLD cluster data confirmed predominantly; bilateral prefrontal and parietal, right frontal and dorsolateral; prefrontal, and left occipital activation in healthy subjects, while; patients’ hemispheric dominance pattern was diminished or reversed,; particularly decreasing cortical BOLD response with increasing task; difficulty in the right superior temporal gyrus. Reduced regional gray; matter thickness correlated with reduced left-hemispheric prefrontal/; frontal and bilateral parietal BOLD activation in patients. This is the; first study demonstrating that reduction of regional gray matter in; first-episode schizophrenia patients is associated with impaired brain; function when performing the Tower of London task, and supports; previous findings of impaired executive attention and working memory; in schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This structural magnetic resonance imaging study examined the relationship between pituitary gland volume (PGV) and lifetime number of parasuicidal behaviors in a first-presentation, teenage borderline personality disorder (BPD) sample with minimal exposure to treatment. Hierarchical regression analysis revealed that age and number of parasuicidal behaviors were significant predictors of PGV. These findings indicate that parasuicidal behavior in BPD might be associated with greater activation of the hypothalamic-pituitary-adrenal (HPA) axis. Further studies are required using direct neuroendocrine measures and exploring other parameters of self-injurious behavior, such as recency of self-injurious behavior, intent to die and medical threat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because brain structure and function are affected in neurological and psychiatric disorders, it is important to disentangle the sources of variation in these phenotypes. Over the past 15 years, twin studies have found evidence for both genetic and environmental influences on neuroimaging phenotypes, but considerable variation across studies makes it difficult to draw clear conclusions about the relative magnitude of these influences. Here we performed the first meta-analysis of structural MRI data from 48 studies on >1,250 twin pairs, and diffusion tensor imaging data from 10 studies on 444 twin pairs. The proportion of total variance accounted for by genes (A), shared environment (C), and unshared environment (E), was calculated by averaging A, C, and E estimates across studies from independent twin cohorts and weighting by sample size. The results indicated that additive genetic estimates were significantly different from zero for all metaanalyzed phenotypes, with the exception of fractional anisotropy (FA) of the callosal splenium, and cortical thickness (CT) of the uncus, left parahippocampal gyrus, and insula. For many phenotypes there was also a significant influence of C. We now have good estimates of heritability for many regional and lobar CT measures, in addition to the global volumes. Confidence intervals are wide and number of individuals small for many of the other phenotypes. In conclusion, while our meta-analysis shows that imaging measures are strongly influenced by genes, and that novel phenotypes such as CT measures, FA measures, and brain activation measures look especially promising, replication across independent samples and demographic groups is necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Although there are many structural neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) in children, there are inconsistencies across studies and no consensus regarding which brain regions show the most robust area or volumetric reductions relative to control subjects. Our goal was to statistically analyze structural imaging data via a meta-analysis to help resolve these issues. Methods We searched the MEDLINE and PsycINFO databases through January 2005. Studies must have been written in English, used magnetic resonance imaging, and presented the means and standard deviations of regions assessed. Data were extracted by one of the authors and verified independently by another author. Results Analyses were performed using STATA with metan, metabias, and metainf programs. A meta-analysis including all regions across all studies indicated global reductions for ADHD subjects compared with control subjects, standardized mean difference equal to .408, p less than .001. Regions most frequently assessed and showing the largest differences included cerebellar regions, the splenium of the corpus callosum, total and right cerebral volume, and right caudate. Several frontal regions assessed in only two studies also showed large significant differences. Conclusions This meta-analysis provides a quantitative analysis of neuroanatomical abnormalities in ADHD and information that can be used to guide future studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Spinal flexibility measurement is an important aspect of pre-operative clinical assessment in the treatment of Adolescent Idiopathic Scoliosis (AIS). Clinically, curve flexibility is a combined measure for all vertebral levels. We propose that in vivo flexibility for individual spinal joints could provide valuable additional information in planning treatment for scoliosis. Methods. Individual spinal joint flexibility in the coronal plane was measured for a series of AIS patients using axially loaded magnetic resonance imaging. Each patient underwent magnetic resonance imaging in the supine position, with no axial load, and then following application of an axial compressive load equal to half the patient’s bodyweight. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. Results. Fifteen AIS patients were included in the study (mean clinical Cobb angle 46 degrees, mean age 15.3 years). Mean intra-observer measurement error for endplate inclination was 1.6˚. The mean increase in measured major Cobb angle between unloaded and loaded scans was 7.6˚. For certain spinal levels (+2,+1,-2 relative to the apex) there was a statistically significant relationship between change in wedge angle under load and initial wedge angle, such that initially highly wedged discs demonstrated a smaller change in wedge angle than less wedged discs. Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. Conclusion. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics in AIS. Knowledge of individual joint flexibility may assist surgeons to determine which spinal procedure is most appropriate for a patient, which levels should be included in a spinal fusion and the relative mobility of individual joints in the deformed region of the spine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. The venous drainage system within vertebral bodies (VBs) has been well documented previously in cadaveric specimens. Advances in 3D imaging and image processing now allow for in vivo quantification of larger venous vessels, such as the basivertebral vein. Differences between healthy and scoliotic VB veins can therefore be investigated. Methods. 20 healthy adolescent controls and 21 AIS patients were recruited (with ethics approval) to undergo 3D MRI, using a 3 Tesla, T1-weighted 3D gradient echo sequence, resulting in 512 slices across the thoraco-lumbar spine, with a voxel size of 0.5x0.5x0.5mm. Using Amira Filament Editor, five transverse slices through the VB were examined simultaneously and the resulting observable vascular network traced. Each VB was assessed, and a vascular network recorded when observable. A local coordinate system was created in the centre of each VB and the vascular networks aligned to this. The length of the vascular network on the left and right sides (with a small central region) of the VB was calculated, and the spatial patterning of the networks assessed level-by-level within each subject. Results. An average of 6 (range 4-10) vascular networks, consistent with descriptions of the basivertebral vein, were identifiable within each subject, most commonly between T10-L1. Differences were seen in the left/right distribution of vessels in the control and AIS subjects. Healthy controls saw a percentage distribution of 29:18:53 across the left:centre:right regions respectively, whereas the AIS subjects had a slightly shifted distribution of 33:25:42. The control group showed consistent spatial patterning of the vascular networks across most levels, but this was not seen in the AIS group. Conclusion. Observation and quantification of the basivertebral vein in vivo is possible using 3D MRI. The AIS group lacked the spatial pattern repetition seen in the control group and minor differences were seen in the left/right distribution of vessels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION. Clinically, the Cobb angle method measures the overall scoliotic curve in the coronal plane but does not measure individual vertebra and disc wedging. The contributions of the vertebrae and discs in the growing scoliotic spine were measured to investigate coronal plane deformity progression with growth. METHODS. A 0.49mm isotropic 3D MRI technique was developed to investigate the level-by-level changes that occur in the growing spine of a group of Adolescent Idiopathic Scoliosis (AIS) patients, who received two to four sequential scans (spaced 3-12 months apart). The coronal plane wedge angles of each vertebra and disc in the major curve were measured to capture any changes that occurred during their adolescent growth phase. RESULTS. Seventeen patients had at least two scans. Mean patient age was 12.9 years (SD 1.5 years). Sixteen were classified as right-sided major thoracic Lenke Type 1 (one left sided). Mean standing Cobb angle at initial presentation was 31° (SD 12°). Six received two scans, nine three scans and two four scans, with 65% showing a Cobb angle progression of 5° or more between scans. Overall, there was no clear pattern of deformity progression of individual vertebrae and discs, nor between patients who progressed and those who didn’t. There were measurable changes in the wedging of the vertebrae and discs in all patients. In sequential scans, change in direction of wedging was also seen. In several patients there was reverse wedging in the discs that counteracted increased wedging of the vertebrae such that no change in overall Cobb angle was seen. CONCLUSION. Sequential MRI data showed complex patterns of deformity progression. Changes to the wedging of individual vertebrae and discs may occur in patients who have no increase in Cobb angle measure; the Cobb method alone may be insufficient to capture the complex mechanisms of deformity progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinically, the Cobb angle method measures the overall scoliotic curve in the coronal plane but does not measure individual vertebra and disc wedging. The contributions of the vertebrae and discs in the growing scoliotic spine were measured to investigate coronal plane deformity progression with growth. Sequential MRI data in this project showed complex patterns of deformity progression. Changes to the wedging of individual vertebrae and discs may occur in patients who have no increase in Cobb angle measure; the Cobb method alone may be insufficient to capture the complex mechanisms of deformity progression.