795 resultados para Fuzzy Measure
Resumo:
Recent gravity missions have produced a dramatic improvement in our ability to measure the ocean’s mean dynamic topography (MDT) from space. To fully exploit this oceanic observation, however, we must quantify its error. To establish a baseline, we first assess the error budget for an MDT calculated using a 3rd generation GOCE geoid and the CLS01 mean sea surface (MSS). With these products, we can resolve MDT spatial scales down to 250 km with an accuracy of 1.7 cm, with the MSS and geoid making similar contributions to the total error. For spatial scales within the range 133–250 km the error is 3.0 cm, with the geoid making the greatest contribution. For the smallest resolvable spatial scales (80–133 km) the total error is 16.4 cm, with geoid error accounting for almost all of this. Relative to this baseline, the most recent versions of the geoid and MSS fields reduce the long and short-wavelength errors by 0.9 and 3.2 cm, respectively, but they have little impact in the medium-wavelength band. The newer MSS is responsible for most of the long-wavelength improvement, while for the short-wavelength component it is the geoid. We find that while the formal geoid errors have reasonable global mean values they fail capture the regional variations in error magnitude, which depend on the steepness of the sea floor topography.
Resumo:
In order to enhance the quality of care, healthcare organisations are increasingly resorting to clinical decision support systems (CDSSs), which provide physicians with appropriate health care decisions or recommendations. However, how to explicitly represent the diverse vague medical knowledge and effectively reason in the decision-making process are still problems we are confronted. In this paper, we incorporate semiotics into fuzzy logic to enhance CDSSs with the aim of providing both the abilities of describing medical domain concepts contextually and reasoning with vague knowledge. A semiotically inspired fuzzy CDSSs framework is presented, based on which the vague knowledge representation and reasoning process are demonstrated.
Resumo:
Purpose – This paper aims to address the gaps in service recovery strategy assessment. An effective service recovery strategy that prevents customer defection after a service failure is a powerful managerial instrument. The literature to date does not present a comprehensive assessment of service recovery strategy. It also lacks a clear picture of the service recovery actions at managers’ disposal in case of failure and the effectiveness of individual strategies on customer outcomes. Design/methodology/approach – Based on service recovery theory, this paper proposes a formative index of service recovery strategy and empirically validates this measure using partial least-squares path modelling with survey data from 437 complainants in the telecommunications industry in Egypt. Findings – The CURE scale (CUstomer REcovery scale) presents evidence of reliability as well as convergent, discriminant and nomological validity. Findings also reveal that problem-solving, speed of response, effort, facilitation and apology are the actions that have an impact on the customer’s satisfaction with service recovery. Practical implications – This new formative index is of potential value in investigating links between strategy and customer evaluations of service by helping managers identify which actions contribute most to changes in the overall service recovery strategy as well as satisfaction with service recovery. Ultimately, the CURE scale facilitates the long-term planning of effective complaint management. Originality/value – This is the first study in the service marketing literature to propose a comprehensive assessment of service recovery strategy and clearly identify the service recovery actions that contribute most to changes in the overall service recovery strategy.
Resumo:
In this article, the authors develop a new measurement scale (the RELQUAL scale) to assess the degree of relationship quality between the exporting firm and the importer. Relationship quality is presented as a high-order concept. Findings reveal that a better quality of the relationship results in a greater (1) amount of information sharing, (2) communication quality, (3) long-term orientation, as well as (4) satisfaction with the relationship. The four multi-item scales show strong evidence of reliability as well as convergent, discriminant and nomological validity in a sample of British exporters. Findings also reveal that relationship quality is positively and significantly associated with export performance. Suggestions for applying the measure in future research are presented.
Resumo:
This article is a direct response to a recent observation in the literature that managers appear to be short-term oriented in their assessment of the performance of an export venture (Madsen 1998). On the basis of a cross-national survey of exporting firms, the authors present a three-dimensional scale for assessing managerial judgment of short-term export performance (i.e., the STEP scale). The three dimensions are (1) satisfaction with short-term performance improvement, (2) short-term exporting intensity improvement, and (3) expected short-term performance improvement. The scale presents evidence of reliability as well as convergent, discriminant, and nomological validity, and it reveals factorial similarity and factorial equivalence across both samples. The authors outline managerial and public policy implications that stem from the scale and identify avenues for further export marketing research.
Resumo:
This paper describes the methodology used to compile a corpus called MorphoQuantics that contains a comprehensive set of 17,943 complex word types extracted from the spoken component of the British National Corpus (BNC). The categorisation of these complex words was derived primarily from the classification of Prefixes, Suffixes and Combining Forms proposed by Stein (2007). The MorphoQuantics corpus has been made available on a website of the same name; it lists 554 word-initial and 281 word-final morphemes in English, their etymology and meaning, and records the type and token frequencies of all the associated complex words containing these morphemes from the spoken element of the BNC, together with their Part of Speech. The results show that, although the number of word-initial affixes is nearly double that of word-final affixes, the relative number of each observed in the BNC is very similar; however, word-final affixes are more productive in that, on average, the frequency with which they attach to different bases is three times that of word-initial affixes. Finally, this paper considers how linguists, psycholinguists and psychologists may use MorphoQuantics to support their empirical work in first and second language acquisition, and clinical and educational research.
Resumo:
There is an on-going debate on the environmental effects of genetically modified crops to which this paper aims to contribute. First, data on environmental impacts of genetically modified (GM) and conventional crops are collected from peer-reviewed journals, and secondly an analysis is conducted in order to examine which crop type is less harmful for the environment. Published data on environmental impacts are measured using an array of indicators, and their analysis requires their normalisation and aggregation. Taking advantage of composite indicators literature, this paper builds composite indicators to measure the impact of GM and conventional crops in three dimensions: (1) non-target key species richness, (2) pesticide use, and (3) aggregated environmental impact. The comparison between the three composite indicators for both crop types allows us to establish not only a ranking to elucidate which crop is more convenient for the environment but the probability that one crop type outperforms the other from an environmental perspective. Results show that GM crops tend to cause lower environmental impacts than conventional crops for the analysed indicators.
Resumo:
Abstract: A new methodology was created to measure the energy consumption and related green house gas (GHG) emissions of a computer operating system (OS) across different device platforms. The methodology involved the direct power measurement of devices under different activity states. In order to include all aspects of an OS, the methodology included measurements in various OS modes, whilst uniquely, also incorporating measurements when running an array of defined software activities, so as to include OS application management features. The methodology was demonstrated on a laptop and phone that could each run multiple OSs, results confirmed that OS can significantly impact the energy consumption of devices. In particular, the new versions of the Microsoft Windows OS were tested and highlighted significant differences between the OS versions on the same hardware. The developed methodology could enable a greater awareness of energy consumption, during both the software development and software marketing processes.
Resumo:
Let λ1,…,λn be real numbers in (0,1) and p1,…,pn be points in Rd. Consider the collection of maps fj:Rd→Rd given by fj(x)=λjx+(1−λj)pj. It is a well known result that there exists a unique nonempty compact set Λ⊂Rd satisfying Λ=∪nj=1fj(Λ). Each x∈Λ has at least one coding, that is a sequence (ϵi)∞i=1 ∈{1,…,n}N that satisfies limN→∞fϵ1…fϵN(0)=x. We study the size and complexity of the set of codings of a generic x∈Λ when Λ has positive Lebesgue measure. In particular, we show that under certain natural conditions almost every x∈Λ has a continuum of codings. We also show that almost every x∈Λ has a universal coding. Our work makes no assumptions on the existence of holes in Λ and improves upon existing results when it is assumed Λ contains no holes.
Resumo:
Conference proceedings paper in Alexander, O. (Ed.) 2007, Proceedings of the 2005 joint BALEAP/SATEFL conference: New Approaches to Materials Development for Language Learning. Bern: Peter Lang.
Resumo:
Understanding complex social-ecological systems, and anticipating how they may respond to rapid change, requires an approach that incorporates environmental, social, economic, and policy factors, usually in a context of fragmented data availability. We employed fuzzy cognitive mapping (FCM) to integrate these factors in the assessment of future wildfire risk in the Chiquitania region, Bolivia. In this region, dealing with wildfires is becoming increasingly challenging due to reinforcing feedbacks between multiple drivers. We conducted semi-structured interviews and constructed different FCMs in focus groups to understand the regional dynamics of wildfire from diverse perspectives. We used FCM modelling to evaluate possible adaptation scenarios in the context of future drier climatic conditions. Scenarios also considered possible failure to respond in time to the emergent risk. This approach proved of great potential to support decision-making for risk management. It helped identify key forcing variables and generate insights into potential risks and trade-offs of different strategies. All scenarios showed increased wildfire risk in the event of more droughts. The ‘Hands-off’ scenario resulted in amplified impacts driven by intensifying trends, affecting particularly the agricultural production. The ‘Fire management’ scenario, which adopted a bottom-up approach to improve controlled burning, showed less trade-offs between wildfire risk reduction and production compared to the ‘Fire suppression’ scenario. Findings highlighted the importance of considering strategies that involve all actors who use fire, and the need to nest these strategies for a more systemic approach to manage wildfire risk. The FCM model could be used as a decision-support tool and serve as a ‘boundary object’ to facilitate collaboration and integration of different forms of knowledge and perceptions of fire in the region. This approach has also the potential to support decisions in other dynamic frontier landscapes around the world that are facing increased risk of large wildfires.
Resumo:
This paper is concerned with the computational efficiency of fuzzy clustering algorithms when the data set to be clustered is described by a proximity matrix only (relational data) and the number of clusters must be automatically estimated from such data. A fuzzy variant of an evolutionary algorithm for relational clustering is derived and compared against two systematic (pseudo-exhaustive) approaches that can also be used to automatically estimate the number of fuzzy clusters in relational data. An extensive collection of experiments involving 18 artificial and two real data sets is reported and analyzed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
There is a family of well-known external clustering validity indexes to measure the degree of compatibility or similarity between two hard partitions of a given data set, including partitions with different numbers of categories. A unified, fully equivalent set-theoretic formulation for an important class of such indexes was derived and extended to the fuzzy domain in a previous work by the author [Campello, R.J.G.B., 2007. A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recognition Lett., 28, 833-841]. However, the proposed fuzzy set-theoretic formulation is not valid as a general approach for comparing two fuzzy partitions of data. Instead, it is an approach for comparing a fuzzy partition against a hard referential partition of the data into mutually disjoint categories. In this paper, generalized external indexes for comparing two data partitions with overlapping categories are introduced. These indexes can be used as general measures for comparing two partitions of the same data set into overlapping categories. An important issue that is seldom touched in the literature is also addressed in the paper, namely, how to compare two partitions of different subsamples of data. A number of pedagogical examples and three simulation experiments are presented and analyzed in details. A review of recent related work compiled from the literature is also provided. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper tackles the problem of showing that evolutionary algorithms for fuzzy clustering can be more efficient than systematic (i.e. repetitive) approaches when the number of clusters in a data set is unknown. To do so, a fuzzy version of an Evolutionary Algorithm for Clustering (EAC) is introduced. A fuzzy cluster validity criterion and a fuzzy local search algorithm are used instead of their hard counterparts employed by EAC. Theoretical complexity analyses for both the systematic and evolutionary algorithms under interest are provided. Examples with computational experiments and statistical analyses are also presented.