886 resultados para Funciones analíticas
Resumo:
En este artículo se pone de manifiesto la presencia de los fenómenos de aproximación organizados por una definición de límite en el caso de las sucesiones de números reales y de las funciones reales de una variable real. La exposición incluye la caracterización de tales fenómenos, una descripción del análisis comparativo desarrollado en base a ellos entre dos definiciones formales de límite de sucesión y función, y una síntesis del estudio llevado a cabo sobre una muestra intencional de libros de texto de matemáticas.
Resumo:
El concepto de función ha evolucionado a través de la historia gracias a la superación de algunos obstáculos adheridos a otros conceptos como la razón, la proporción y la medida. Con base en ello, se prepara el camino para realizar una transposición didáctica y abordar desde allí la noción de función, apoyando el diseño y la implementación de una secuencia de actividades cuyo interés es mostrar que a través una de situación fundamental mediada por el análisis de facturas de servicios públicos, y las fases de la TSD1, es posible acercarse a la noción de función desde los isomorfismos de medida.
Resumo:
A nivel educativo la noción de derivada se enseña en los cursos regulares de cálculo, pero por lo general, siempre en la forma en que fue definida por Cauchy, lo que implica un procedimiento se hace necesario hacer una factorización. Constantin Caratheodory establece una definición diferente. Esta definición presenta tres aspectos didácticos destacados: Nos muestra que el proceso de acercamiento de las pendientes de las secantes a la pendiente de la tangente es continuo y por tanto, la continuidad es esencial para la derivabilidad, la segunda parte se refiere a la facilidad de la derivación como un proceso de factorización repetitivo y no como cálculo de límites, así como simplicidad en la demostración de teoremas de linealidad, regla de la cadena, algebra de derivadas (suma, producto y cociente), aplicado a funciones polinómicas de valor real y la tercera es que a nivel escolar se generan alternativas en la enseñanza del cálculo a través de la implementación de conceptos nuevos, con el fin de evitar procedimientos tediosos que se tienen con las definiciones tradicionales como la de Cauchy.
Resumo:
Uno de los objetos matemáticos que los alumnos manipulan algebraicamente, sin saber su significado, es el concepto del límite matemático. Ejemplo de tal situación son los estándares de evaluación de algunos libros sobre el tema: “aplico las propiedades para hallar límites de funciones sencillas”, “calculo límites infinitos o al infinito de funciones racionales”, entre otros. La presente propuesta pretende que a partir de problemas el alumno construya el significado del límite y del infinito en matemáticas. La propuesta está basada en los sistemas de representación y el modelamiento funcional.
Resumo:
En este documento se presentan los avances del proyecto de investigación “El concepto de función en las matemáticas escolares” realizado en cooperación entre el Programa de Educación Formal para Adultos del ITM y la Universidad de Antioquia. Se retoma la tesis propuesta por Posada & Villa,(2006) en donde se afirma que una didáctica del concepto de función debe abordar los aspectos de la variación, la modelación y los sistemas de representación. Con base en este plateamiento se construye una propuesta didáctica que pretende potenciar el entendimiento de algunos aspectos de la función lineal y cuadrática.
Resumo:
Son muchas las investigaciones que han resaltado la importancia de un conocimiento de la evolución histórica de un concepto matemático en la comprensión de los obstáculos y razonamientos de los estudiantes al interior del aula de clase (Posada & Villa,2006). Con base en este argumento, se presenta en este documento los resultados de una indagación histórica sobre la evolución del concepto de función cuadrática que ofrece al lector algunas pautas que le sean útiles a la hora de diseñar situaciones didácticas que involucren el concepto objeto de este estudio.
Resumo:
La Secretaría de Educación Distrital de Bogotá y el Instituto para la Investigación Educativa y el Desarrollo Pedagógico Idep puso en marcha el Laboratorio de evaluación de Bogotá que tiene como uno de sus propósitos generar espacios de discusión teórica, técnica y política en torno a la problemática de la evaluación desde una perspectiva investigativa. En ese sentido nace las pruebas comprender y el ejercicio reflexivo de los usos de la información como herramienta pedagógica. El presente artículo muestra algunos de los agentes que se asocian a la evaluación interna; y las aplicaciones que se hacen de los reportes de los resultados de evaluaciones masivas como son las pruebas comprender de matemáticas.
Resumo:
Este articulo reporta el trabajo de estudiantes de noveno a undécimo grado en la solución de un problema de optimización, en donde el modelado juega un papel principal puesto que les permitió llegar a conclusiones y generalizaciones que no fueron posibles a través del lápiz y el papel. Se comentan las estrategias y procedimientos que siguieron los estudiantes y se destaca la importancia de la mediación instrumental a través de la modelación en el proceso de verificación de la solución del problema.
Resumo:
Con el presente proyecto de investigación se pretenden proponer algunas estrategias didácticas en la perspectiva de potenciar el pensamiento variacional en estudiantes de octavo y Noveno grados, de Educación Básica, a través de situaciones problemas. El estudio se realiza en tres Instituciones Educativas de carácter Público, del municipio de Sincelejo, Colombia. Se emplea un diseño cualitativo que se aproxima a la investigación-acción. Este estudio es realizado por el grupo de investigación “Pensamiento Matemático” (PEMA), con el auspicio de la Universidad de Sucre de Sincelejo, Colombia.
Resumo:
Pensar que existen soluciones para cerrar la brecha entre el colegio y la universidad es utópico. Sin embargo, sí tiene sentido el trabajo que se haga con respecto al problema de la brecha para conocer y acercar los ideales y las expectativas que tienen las diferentes instituciones de educación. En la Universidad de los Andes fue evidente que dicho trabajo se podría orientar en diferentes direcciones y haciendo énfasis en la institución o bien en los profesores o bien en los estudiantes. Se podían abordar temas como: diseño curricular, creencias y actitudes de los profesores y de los estudiantes, métodos de enseñanza, concepciones sobre la enseñanza y el aprendizaje, dificultades y errores de aprendizaje y otros temas. Luego de varios traspiés en la elección del tema de investigación, elegimos finalmente explorar el tema del aprendizaje y considerar a los primíparos para el estudio por ser ellos los que viven realmente el proceso de transición del colegio a la universidad. Por otra parte, nos restringimos al área de precálculo motivados en parte porque en esta materia había un mayor índice de desaprobación. Concretamente, se propuso como objetivo general describir un perfil de aprendizaje en matemáticas del estudiante de Precálculo en el momento de ingresar a la Universidad. Del objetivo anterior se derivó el problema principal de este proyecto: definir los elementos conceptuales con los cuáles articular la descripción de dicho perfil. La presentación está dividida en cuatro partes, en la primera se expone un marco conceptual que presenta los elementos con los cuales se describirá el perfil, la segunda y tercera se refieren respectivamente a la metodología de la investigación y a los resultados obtenidos y la última a las conclusiones del trabajo.
Resumo:
El trabajo parte de una inquietud que se centra en dos aspectos: el uso indistinto que los estudiantes dan a las letras para resolver ecuaciones, para hallar equivalencias algebraicas y para abordar situaciones de variación. Se involucra la función cuadrática como objeto matemático. Esto, al menos por dos razones: en primera instancia porque fue la temática en la cual venían trabajando los estudiantes al momento de realizar el proyecto, y en segundo lugar porque la función cuadrática puede y ha sido interpretada como modelo matemático de procesos de variación cuadrática (Mesa & Ochoa, 2009; Posada & otros, 2006). Analizan diferentes usos que dan los estudiantes a las letras en determinadas tareas.
Resumo:
Se presenta una propuesta desarrollada en el Departamento del Magdalena, Distrito Cultural e Histórico de Santa Marta. A finales del año 2002 se hizo un análisis de los bajos resultados presentados por los estudiantes de grado Once en las diferentes pruebas aplicadas por el ICFES, específicamente en el área de Matemática durante los años 2001 y 2002. A partir de estos resultados se organizó un equipo de trabajo donde se asumió que la evaluación es un proceso continuo e integral en la enseñanza de la matemática que no solo basta dar información a diario, sino conocer realmente si los estudiantes están aprendiendo, si verdaderamente los alumnos son competentes a la hora de evaluarlos y además si se cumplen los estándares mínimos exigidos por MEN. Para lograr tal fin se diseño un plan estratégico a mediano plazo que ayuda a fortalecer los niveles de desempeño en el desarrollo de sus competencias tanto integrales ((interpretativa, argumentativa, propositiva) como básicas (la comunicación, el razonamiento y la solución de problemas), obteniéndose a partir del año 2006 resultados satisfactorios en el área.
Resumo:
En este trabajo se pone de manifiesto la presencia de los fenómenos de aproximación organizados por una definición de límite en el caso de las sucesiones de números reales y de las funciones reales de una variable real. La exposición incluye la caracterización de tales fenómenos, una descripción del análisis comparativo desarrollado en base a ellos entre dos definiciones formales de límite de sucesión y función y una síntesis del estudio llevado a cabo sobre una muestra intencional de libros de texto de matemáticas.
Resumo:
Lo que sigue tiene dos partes bien diferenciadas: una primera que presenta unas notas elaboradas in situ sobre la exposición de E. Lacasta y otra más elaborada, que más que una réplica pretende dar una visión algo diferente sobre el uso de las gráficas cartesianas. La reflexión personal y el concurso de las nuevas tecnologías marcan el enfoque que aquí se describe.
Resumo:
Se desarrolla la noción de razonamiento covariacional y se propone un marco conceptual para describir las acciones mentales involucradas al aplicar razonamiento covariacional cuando se interpretan y representan funciones asociadas a eventos dinámicos. Se reporta la habilidad para razonar sobre cantidades covariantes en situaciones dinámicas, de estudiantes de alto desempeño en un curso de cálculo. El estudio reveló que ellos eran capaces de construir imágenes de la variable dependiente de una función que cambia simultáneamente con el cambio imaginado de la variable independiente, y en algunas ocasiones eran capaces de construir imágenes de la razón de cambio para intervalos contiguos del dominio de una función. Sin embargo, al parecer, tuvieron dificultad para formar imágenes de una razón cambiante de manera continua y no pudieron representar con exactitud o interpretar los puntos de inflexión ni la razón creciente y decreciente para funciones asociadas a situaciones dinámicas. Estos hallazgos sugieren que el currículo y la instrucción deberían aumentar el énfasis en el cambio que debe darse en los alumnos de una imagen coordinada de dos variables que cambian simultáneamente a una imagen coordinada de razón de cambio instantánea con cambios continuos en la variable independiente para funciones asociadas a situaciones dinámicas.