876 resultados para Dynamics control systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years I have begun to integrate Creative Robotics into my Ecosophically-led art practices – which I have long deployed to investigate, materialise and engage thorny, ecological questions of the Anthropocene, seeking to understand how such forms of practice may promote the cultural conditions required to assure, rather than degrade, our collective futures. Many of us would instinctively conceive of robotics as an industrially driven endeavor, shaped by the pursuit of relentless efficiencies. Instead I ask through my practices, might the nascent field of Creative Robotics still be able to emerge with radically different frames of intention? Might creative practitioners still be able to shape experiences using robotic media that retain a healthy criticality towards such productivist lineages? Could this nascent form even bring forward fresh new techniques and assemblages that better encourage conversations around sustaining a future for the future, and, if so, which of its characteristics presents the greatest opportunities? I therefore ask, when Creative Robotics and Ecosophical Practice combine forces in strategic intervention, what qualities of this hybrid might best further the central aims of Ecosophical Practice – encouraging cultural conditions required to assure a future for the future?

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This proposal describes the innovative and competitive lunar payload solution developed at the Queensland University of Technology (QUT)–the LunaRoo: a hopping robot designed to exploit the Moon's lower gravity to leap up to 20m above the surface. It is compact enough to fit within a 10cm cube, whilst providing unique observation and mission capabilities by creating imagery during the hop. This first section is deliberately kept short and concise for web submission; additional information can be found in the second chapter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Place recognition has long been an incompletely solved problem in that all approaches involve significant compromises. Current methods address many but never all of the critical challenges of place recognition – viewpoint-invariance, condition-invariance and minimizing training requirements. Here we present an approach that adapts state-of-the-art object proposal techniques to identify potential landmarks within an image for place recognition. We use the astonishing power of convolutional neural network features to identify matching landmark proposals between images to perform place recognition over extreme appearance and viewpoint variations. Our system does not require any form of training, all components are generic enough to be used off-the-shelf. We present a range of challenging experiments in varied viewpoint and environmental conditions. We demonstrate superior performance to current state-of-the- art techniques. Furthermore, by building on existing and widely used recognition frameworks, this approach provides a highly compatible place recognition system with the potential for easy integration of other techniques such as object detection and semantic scene interpretation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel vision-based underwater robotic system for the identification and control of Crown-Of-Thorns starfish (COTS) in coral reef environments. COTS have been identified as one of the most significant threats to Australia's Great Barrier Reef. These starfish literally eat coral, impacting large areas of reef and the marine ecosystem that depends on it. Evidence has suggested that land-based nutrient runoff has accelerated recent outbreaks of COTS requiring extensive use of divers to manually inject biological agents into the starfish in an attempt to control population numbers. Facilitating this control program using robotics is the goal of our research. In this paper we introduce a vision-based COTS detection and tracking system based on a Random Forest Classifier (RFC) trained on images from underwater footage. To track COTS with a moving camera, we embed the RFC in a particle filter detector and tracker where the predicted class probability of the RFC is used as an observation probability to weight the particles, and we use a sparse optical flow estimation for the prediction step of the filter. The system is experimentally evaluated in a realistic laboratory setup using a robotic arm that moves a camera at different speeds and heights over a range of real-size images of COTS in a reef environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an empirical evaluation and comparison of two content extraction methods in HTML: absolute XPath expressions and relative XPath expressions. We argue that the relative XPath expressions, although not widely used, should be used in preference to absolute XPath expressions in extracting content from human-created Web documents. Evaluation of robustness covers four thousand queries executed on several hundred webpages. We show that in referencing parts of real world dynamic HTML documents, relative XPath expressions are on average significantly more robust than absolute XPath ones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis examines the extent of which economic instruments can be used to minimise environmental damage in the coastal and marine environments, and the role of offsets to compensate for residual damage. Economic principles are used to review current command and control systems, potential incentive based mechanisms, and the development of appropriate offsets. Implementing offsets in the marine environment has a number of challenges, so alternative approaches may be necessary. The study finds that offsets in areas remote from the initial impact, or even to protect different species, may be acceptable provided they result in greater conservation benefits than the standard like-for-like offset. This study is particularly relevant for the design of offsets in the coastal and marine environments where there is limited scope for like-for-like offsets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi-objective optimization is an active field of research with broad applicability in aeronautics. This report details a variant of the original NSGA-II software aimed to improve the performances of such a widely used Genetic Algorithm in finding the optimal Pareto-front of a Multi-Objective optimization problem for the use of UAV and aircraft design and optimsaiton. Original NSGA-II works on a population of predetermined constant size and its computational cost to evaluate one generation is O(mn^2 ), being m the number of objective functions and n the population size. The basic idea encouraging this work is that of reduce the computational cost of the NSGA-II algorithm by making it work on a population of variable size, in order to obtain better convergence towards the Pareto-front in less time. In this work some test functions will be tested with both original NSGA-II and VPNSGA-II algorithms; each test will be timed in order to get a measure of the computational cost of each trial and the results will be compared.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Game strategies have been developed in past decades and used in the field of economics, engineering, computer science and biology due to their efficiency in solving design optimisation problems. In addition, research on Multi-Objective (MO) and Multidisciplinary Design Optimisation (MDO) has focused on developing robust and efficient optimisation method to produce quality solutions with less computational time. In this paper, a new optimisation method Hybrid Game Strategy for MO problems is introduced and compared to CMA-ES based optimisation approach. Numerical results obtained from both optimisation methods are compared in terms of computational expense and model quality. The benefits of using Game-strategies are demonstrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a symbolic navigation system that uses spatial language descriptions to inform goal-directed exploration in unfamiliar office environments. An abstract map is created from a collection of natural language phrases describing the spatial layout of the environment. The spatial representation in the abstract map is controlled by a constraint based interpretation of each natural language phrase. In goal-directed exploration of an unseen office environment, the robot links the information in the abstract map to observed symbolic information and its grounded world representation. This paper demonstrates the ability of the system, in both simulated and real-world trials, to efficiently find target rooms in environments that it has never been to previously. In three unexplored environments, it is shown that on average the system travels only 8.42% further than the optimal path when using only natural language phrases to complete navigation tasks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deep convolutional network models have dominated recent work in human action recognition as well as image classification. However, these methods are often unduly influenced by the image background, learning and exploiting the presence of cues in typical computer vision datasets. For unbiased robotics applications, the degree of variation and novelty in action backgrounds is far greater than in computer vision datasets. To address this challenge, we propose an “action region proposal” method that, informed by optical flow, extracts image regions likely to contain actions for input into the network both during training and testing. In a range of experiments, we demonstrate that manually segmenting the background is not enough; but through active action region proposals during training and testing, state-of-the-art or better performance can be achieved on individual spatial and temporal video components. Finally, we show by focusing attention through action region proposals, we can further improve upon the existing state-of-the-art in spatio-temporally fused action recognition performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The heat capacity of a substance is related to the structure and constitution of the material and its measurement is a standard technique of physical investigation. In this review, the classical methods are first analyzed briefly and their recent extensions are summarized. The merits and demerits of these methods are pointed out. The newer techniques such as the a.c. method, the relaxation method, the pulse methods, the laser flash calorimetry and other methods developed to extend the heat capacity measurements to newer classes of materials and to extreme conditions of sample geometry, pressure and temperature are comprehensively reviewed. Examples of recent work and details of the experimental systems are provided for each method. The introduction of automation in control systems for the monitoring of the experiments and for data processing is also discussed. Two hundred and eight references and 18 figures are used to illustrate the various techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is an increased interest on the use of UAVs for environmental research such as tracking bush fires, volcanic eruptions, chemical accidents or pollution sources. The aim of this paper is to describe the theory and results of a bio-inspired plume tracking algorithm. A method for generating sparse plumes in a virtual environment was also developed. Results indicated the ability of the algorithms to track plumes in 2D and 3D. The system has been tested with hardware in the loop (HIL) simulations and in flight using a CO2 gas sensor mounted to a multi-rotor UAV. The UAV is controlled by the plume tracking algorithm running on the ground control station (GCS).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is an increased interest in the use of Unmanned Aerial Vehicles for load transportation from environmental remote sensing to construction and parcel delivery. One of the main challenges is accurate control of the load position and trajectory. This paper presents an assessment of real flight trials for the control of an autonomous multi-rotor with a suspended slung load using only visual feedback to determine the load position. This method uses an onboard camera to take advantage of a common visual marker detection algorithm to robustly detect the load location. The load position is calculated using an onboard processor, and transmitted over a wireless network to a ground station integrating MATLAB/SIMULINK and Robotic Operating System (ROS) and a Model Predictive Controller (MPC) to control both the load and the UAV. To evaluate the system performance, the position of the load determined by the visual detection system in real flight is compared with data received by a motion tracking system. The multi-rotor position tracking performance is also analyzed by conducting flight trials using perfect load position data and data obtained only from the visual system. Results show very accurate estimation of the load position (~5% Offset) using only the visual system and demonstrate that the need for an external motion tracking system is not needed for this task.