978 resultados para Dirac equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many dynamical processes are subject to abrupt changes in state. Often these perturbations can be periodic and of short duration relative to the evolving process. These types of phenomena are described well by what are referred to as impulsive differential equations, systems of differential equations coupled with discrete mappings in state space. In this thesis we employ impulsive differential equations to model disease transmission within an industrial livestock barn. In particular we focus on the poultry industry and a viral disease of poultry called Marek's disease. This system lends itself well to impulsive differential equations. Entire cohorts of poultry are introduced and removed from a barn concurrently. Additionally, Marek's disease is transmitted indirectly and the viral particles can survive outside the host for weeks. Therefore, depopulating, cleaning, and restocking of the barn are integral factors in modelling disease transmission and can be completely captured by the impulsive component of the model. Our model allows us to investigate how modern broiler farm practices can make disease elimination difficult or impossible to achieve. It also enables us to investigate factors that may contribute to virulence evolution. Our model suggests that by decrease the cohort duration or by decreasing the flock density, Marek's disease can be eliminated from a barn with no increase in cleaning effort. Unfortunately our model also suggests that these practices will lead to disease evolution towards greater virulence. Additionally, our model suggests that if intensive cleaning between cohorts does not rid the barn of disease, it may drive evolution and cause the disease to become more virulent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear properties of small amplitude electron-acoustic solitary waves (EAWs) in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and isothermal ions with two different temperatures obeying Boltzmann type distributions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili (KP) equation. At the critical ion density, the KP equation is not appropriate for describing the system. Hence, a new set of stretched coordinates
is considered to derive the modified KP equation. Moreover, the solitary solution, soliton energy and the associated electric field at the critical ion density were computed. The present investigation can be of relevance to the electrostatic solitary structures observed in various space plasma environments, such as Earth’s magnetotail region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generalized KP (GKP) equations with an arbitrary nonlinear term model and characterize many nonlinear physical phenomena. The symmetries of GKP equation with an arbitrary nonlinear term are obtained. The condition that must satisfy for existence the symmetries group of GKP is derived and also the obtained symmetries are classified according to different forms of the nonlinear term. The resulting similarity reductions are studied by performing the bifurcation and the phase portrait of GKP and also the corresponding solitary wave solutions of GKP
equation are constructed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimates of HIV prevalence are important for policy in order to establish the health status of a country's population and to evaluate the effectiveness of population-based interventions and campaigns. However, participation rates in testing for surveillance conducted as part of household surveys, on which many of these estimates are based, can be low. HIV positive individuals may be less likely to participate because they fear disclosure, in which case estimates obtained using conventional approaches to deal with missing data, such as imputation-based methods, will be biased. We develop a Heckman-type simultaneous equation approach which accounts for non-ignorable selection, but unlike previous implementations, allows for spatial dependence and does not impose a homogeneous selection process on all respondents. In addition, our framework addresses the issue of separation, where for instance some factors are severely unbalanced and highly predictive of the response, which would ordinarily prevent model convergence. Estimation is carried out within a penalized likelihood framework where smoothing is achieved using a parametrization of the smoothing criterion which makes estimation more stable and efficient. We provide the software for straightforward implementation of the proposed approach, and apply our methodology to estimating national and sub-national HIV prevalence in Swaziland, Zimbabwe and Zambia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The annotation of Business Dynamics models with parameters and equations, to simulate the system under study and further evaluate its simulation output, typically involves a lot of manual work. In this paper we present an approach for automated equation formulation of a given Causal Loop Diagram (CLD) and a set of associated time series with the help of neural network evolution (NEvo). NEvo enables the automated retrieval of surrogate equations for each quantity in the given CLD, hence it produces a fully annotated CLD that can be used for later simulations to predict future KPI development. In the end of the paper, we provide a detailed evaluation of NEvo on a business use-case to demonstrate its single step prediction capabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling of massive stars and supernovae (SNe) plays a crucial role in understanding galaxies. From this modelling we can derive fundamental constraints on stellar evolution, mass-loss processes, mixing, and the products of nucleosynthesis. Proper account must be taken of all important processes that populate and depopulate the levels (collisional excitation, de-excitation, ionization, recombination, photoionization, bound–bound processes). For the analysis of Type Ia SNe and core collapse SNe (Types Ib, Ic and II) Fe group elements are particularly important. Unfortunately little data is currently available and most noticeably absent are the photoionization cross-sections for the Fe-peaks which have high abundances in SNe. Important interactions for both photoionization and electron-impact excitation are calculated using the relativistic Dirac atomic R-matrix codes (DARC) for low-ionization stages of Cobalt. All results are calculated up to photon energies of 45 eV and electron energies up to 20 eV. The wavefunction representation of Co III has been generated using GRASP0 by including the dominant 3d7, 3d6[4s, 4p], 3p43d9 and 3p63d9 configurations, resulting in 292 fine structure levels. Electron-impact collision strengths and Maxwellian averaged effective collision strengths across a wide range of astrophysically relevant temperatures are computed for Co III. In addition, statistically weighted level-resolved ground and metastable photoionization cross-sections are presented for Co II and compared directly with existing work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexagonal Resonant Triad patterns are shown to exist as stable solutions of a particular type of nonlinear field where no cubic field nonlinearity is present. The zero ‘dc’ Fourier mode is shown to stabilize these patterns produced by a pure quadratic field nonlinearity. Closed form solutions and stability results are obtained near the critical point, complimented by numerical studies far from the critical point. These results are obtained using a neural field based on the Helmholtzian operator. Constraints on structure and parameters for a general pure quadratic neural field which supports hexagonal patterns are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_{x_0^+}^{1+\alpha}$, $D_{y_0^+}^{1+\beta}$, $D_{z_0^+}^{1+\gamma}$ are in the Riemann-Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator $\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. Making use of the Mittag-Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we consider algebro-geometric aspects of the Classical Yang-Baxter Equation and the Generalised Classical Yang-Baxter Equation. In chapter one we present a method to construct solutions of the Generalised Classical Yang-Baxter Equation starting with certain sheaves of Lie algebras on algebraic curves. Furthermore we discuss a criterion to check unitarity of such solutions. In chapter two we consider the special class of solutions coming from sheaves of traceless endomorphisms of simple vector bundles on the nodal cubic curve. These solutions are quasi-trigonometric and we describe how they fit into the classification scheme of such solutions. Moreover, we describe a concrete formula for these solutions. In the third and final chapter we show that any unitary, rational solution of the Classical Yang-Baxter Equation can be obtained via the method of chapter one applied to a sheaf of Lie algebras on the cuspidal cubic curve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this document we explore the issue of $L^1\to L^\infty$ estimates for the solution operator of the linear Schr\"{o}dinger equation, \begin{align*} iu_t-\Delta u+Vu&=0 &u(x,0)=f(x)\in \mathcal S(\R^n). \end{align*} We focus particularly on the five and seven dimensional cases. We prove that the solution operator precomposed with projection onto the absolutely continuous spectrum of $H=-\Delta+V$ satisfies the following estimate $\|e^{itH} P_{ac}(H)\|_{L^1\to L^\infty} \lesssim |t|^{-\frac{n}{2}}$ under certain conditions on the potential $V$. Specifically, we prove the dispersive estimate is satisfied with optimal assumptions on smoothness, that is $V\in C^{\frac{n-3}{2}}(\R^n)$ for $n=5,7$ assuming that zero is regular, $|V(x)|\lesssim \langle x\rangle^{-\beta}$ and $|\nabla^j V(x)|\lesssim \langle x\rangle^{-\alpha}$, $1\leq j\leq \frac{n-3}{2}$ for some $\beta>\frac{3n+5}{2}$ and $\alpha>3,8$ in dimensions five and seven respectively. We also show that for the five dimensional result one only needs that $|V(x)|\lesssim \langle x\rangle^{-4-}$ in addition to the assumptions on the derivative and regularity of the potential. This more than cuts in half the required decay rate in the first chapter. Finally we consider a problem involving the non-linear Schr\"{o}dinger equation. In particular, we consider the following equation that arises in fiber optic communication systems, \begin{align*} iu_t+d(t) u_{xx}+|u|^2 u=0. \end{align*} We can reduce this to a non-linear, non-local eigenvalue equation that describes the so-called dispersion management solitons. We prove that the dispersion management solitons decay exponentially in $x$ and in the Fourier transform of $x$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, by using the method of separation of variables, we obtain eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator defined via fractional Caputo derivatives. The solutions are expressed using the Mittag-Leffler function and we show some graphical representations for some parameters. A family of fundamental solutions of the corresponding fractional Dirac operator is also obtained. Particular cases are considered in both cases.