Photoionization of Co<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-weight: inherit; font-style: inherit; font-size: 0.85em; font-family: inherit; line-height: 0; text-align: inherit;">+</sup> and electron-impact excitation of Co<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-weight: inherit; font-style: inherit; font-size: 0.85em; font-family: inherit; line-height: 0; text-align: inherit;">2 +</sup> using the Dirac <em style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-weight: inherit; font-size: inherit; font-family: inherit; line-height: inherit; text-align: inherit; vertical-align: baseline;">R</em>-matrix method


Autoria(s): Tyndall, N. B.; Ramsbottom, C. A.; Ballance, C. P.; Hibbert, A.
Data(s)

01/11/2016

Resumo

Modelling of massive stars and supernovae (SNe) plays a crucial role in understanding galaxies. From this modelling we can derive fundamental constraints on stellar evolution, mass-loss processes, mixing, and the products of nucleosynthesis. Proper account must be taken of all important processes that populate and depopulate the levels (collisional excitation, de-excitation, ionization, recombination, photoionization, bound–bound processes). For the analysis of Type Ia SNe and core collapse SNe (Types Ib, Ic and II) Fe group elements are particularly important. Unfortunately little data is currently available and most noticeably absent are the photoionization cross-sections for the Fe-peaks which have high abundances in SNe. Important interactions for both photoionization and electron-impact excitation are calculated using the relativistic Dirac atomic <em style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 14px; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: inherit; vertical-align: baseline; background-color: rgb(255, 255, 255);">R</em>-matrix codes (DARC) for low-ionization stages of Cobalt. All results are calculated up to photon energies of 45 eV and electron energies up to 20 eV. The wavefunction representation of Co III has been generated using GRASP0 by including the dominant 3d<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: 0; background-color: rgb(255, 255, 255);">7</sup>, 3d<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: 0; background-color: rgb(255, 255, 255);">6</sup>[4s, 4p], 3p<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: 0; background-color: rgb(255, 255, 255);">4</sup>3d<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: 0; background-color: rgb(255, 255, 255);">9</sup> and 3p<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: 0; background-color: rgb(255, 255, 255);">6</sup>3d<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: 0; background-color: rgb(255, 255, 255);">9</sup> configurations, resulting in 292 fine structure levels. Electron-impact collision strengths and Maxwellian averaged effective collision strengths across a wide range of astrophysically relevant temperatures are computed for Co III. In addition, statistically weighted level-resolved ground and metastable photoionization cross-sections are presented for Co II and compared directly with existing work.

Formato

application/pdf

Identificador

http://pure.qub.ac.uk/portal/en/publications/photoionization-of-coand-electronimpact-excitation-of-co2-using-the-diracrmatrix-method(5e68f33d-cea5-4d0c-b71a-d1bd9bf99171).html

http://dx.doi.org/10.1093/mnras/stw1843

http://pure.qub.ac.uk/ws/files/104677213/Photoionization_of_Co_and_electron_impact_excitation_of_Co2_using_the_Dirac_R_matrix_method.pdf

Idioma(s)

eng

Direitos

info:eu-repo/semantics/openAccess

Fonte

Tyndall , N B , Ramsbottom , C A , Ballance , C P & Hibbert , A 2016 , ' Photoionization of Co +  and electron-impact excitation of Co 2 +  using the Dirac  R -matrix method ' Monthly Notices of the Royal Astronomical Society , vol 462 , no. 3 , pp. 3350-3360 . DOI: 10.1093/mnras/stw1843

Palavras-Chave #physics.atom-ph
Tipo

article