981 resultados para Dietary fiber
Resumo:
In this paper, we present a theoretical approach to optimize the design of a fiber optic hydrophone based on a flat diaphragm and multilayer fiber coils. In this theoretical analysis, both the radial and tangential strain induced fiber length changes are taken into account. The result shows that the position of the fiber coils and the number of the fiber layers have significant effects on the sensitivity, of the hydrophone. By optimizing these parameters, a higher sensitivity can be achieved. Sample hydrophones are fabricated and tested. The experimental result is in good agreement with the theoretical result, which shows this theoretical approach is effective in optimizing the design of the fiber optic hydrophone. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We propose a configuration for suppressing pumps in a broad- and flat-hand tunable nondegenerate four-wave mixing (FWM) wavelength converter. The signal and pumps are coupled into a highly nonlinear photonic crystal fiber symmetrical Sagnac loop. After the FWM wavelength conversion in the loop, the idler is separated from the pumps without a filter. In our experiment, a flat wavelength conversion bandwidth of 36 rim, conversion efficiency of-11 dB., pump-to-signal suppression ratio of 48 dB, and idler-to-pump suppression ratio of 15 dB are achieved.
Resumo:
A scheme for hi-fi all-optical continuously tunable delay is proposed. The signal wavelength is converted to a desired idler wavelength and converted back after being delayed by a high linear-chirp-rate (HLCR) fiber Bragg grating (FBG) based on four-wave mixing (FWM) in a highly-nonlinear photonic crystal fiber (HN-PCF). In our experiment, 400 ps (more than 8 full width of half maximum, FWHM) tunable delay is achieved for a 10 GHz clock pulse with relative pulse width broaden ratio (RPWBR) of 2.08%. The power penalty is only 0.3 dB at 10(-9) BER for a 10 Gb/s 2(31)-1 pseudo random bit sequence (PRBS) data. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report the technique of the ion-implanted semi-insulating GaAs wafer used for passive Q-switched mode locking in double-cladding Yb:fiber laser. The wafer was implanted with 400-keV energy, 10(16)/cm(2) dose As+ ions, and was annealed at 600degreesC for 20 min. At the pump power of 5W, we achieved output power of 200mW. The repetition rate of envelope of Q-switched mode locking is 50-kHz with a FWHM envelope of 4mus. The repetition rate of mode locked pulse train was found to be 15-MHz. This is the first report of such a kind of laser to the best of our knowledge.
Resumo:
A new packaged fiber Bragg grating using bimetal cantilever beam as the strain agent is presented. The grating is two-point attached on one specific surface of the bimetal beam which consists of two metallic material with different thermal-expansion coefficient. Thereby the grating can be compressed or stretched along with the cantilever beam while temperature varies and temperature compensation can be realized. At the same time, grating chirping can be avoided for the particular attaching method. Experiment results demonstrated that the device is able to automatically compensate temperature induced wavelength shift. The temperature dependence of Bragg wavelength reduced to -0.4 pm/degrees C over the temperature range from -20 to 60 degrees C. This fiber grating package technique is cost effective and can be used in strain sensing. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The accurate mode field profile of high negative dispersion dual-core photonic crystal fiber (DCPCF) is measured. The mode field evolution of DCPCF with wavelength is studied experimentally for the first time. The measurement result shows that no individual inner core mode or outer core mode exists, but two modes coexist simultaneously, and either one of them is dominant. The mode field evolution versus wavelength indicates that the wavelength range where the modes coupling takes place between inner core and outer core is broader than that of theoretical design.
Resumo:
Six-period 4 nm GaN/10 nm AlxGa1-xN superlattices with different Al mole fractions x were prepared on (0001) sapphire substrates by low-temperature metal-organic chemical vapor deposition. The linear electro-optic (Pockels) effect was studied by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The measured electro-optic coefficients, gamma(13)=5.60 +/- 0.18 pm/V, gamma(33)=19.24 +/- 1.21 pm/V (for sample 1, x=0.3), and gamma(13)=3.09 +/- 0.48 pm/V, gamma(33)=8.94 +/- 0.36 pm/V (for sample 2, x=0.1), respectively, are about ten times larger than those of GaN bulk material. The enhancement effect in GaN/AlxGa1-xN superlattice can be attributed to the large built-in field at the interfaces, depending on the mole fraction of Al. (C) 2007 American Institute of Physics.
Resumo:
A stabilized and tunable single-longitudinal-mode erbium-doped fiber ring laser has been proposed and experimentally demonstrated. The laser is structured by combining the compound cavity with a fiber Fabry-Perot tunable filter. An injection-locking technique has been used to stabilize the wavelength and output power of the laser. One of the longitudinal modes is stimulated by the injected continuous wave so that this mode is able to win the competition to stabilize the system. A minimum output power of 0.6 dBm and a signal-to-noise ratio of over 43 dB within the tuning range of 1527-1562 nm can be achieved with the proposed technique. A wavelength variation of less than 0.01 nm, a power fluctuation of less than 0.02 dB, and a short-term linewidth of about 1.4 kHz have also been obtained.
Resumo:
Ten-period 5.5 nm Si0.75Ge0.25/10.3 nm Si/2.5 nm Si0.5Ge0.5 trilayer asymmetric superlattice was prepared on Si (001) substrate by ultrahigh vacuum chemical vapor deposition at 500 degrees C. The stability of Mach-Zehnder interferometer was improved by utilizing polarization-maintaining fibers. According to the electro-optic responses of the superlattice with the light polarization along [110] and [-110], respectively, both electro-optic coefficients gamma(13) and gamma(63) of such asymmetric superlattice were measured. gamma(13) and gamma(63) are 2.4x10(-11) and 1.3x10(-11) cm/V, respectively, with the incident light wavelength at 1.55 mu m. (c) 2006 American Institute of Physics.
Resumo:
In this paper the resonant wavelength of a long period fiber grating (LPG) is tuned toward longer wavelength by etching the fiber, For LP04 and LP05 cladding modes', the tuning ranges of 23 and 81 nm are achieved, respectively. Also the dependence of the resonant wavelength on the cladding radius of LPG is theoretically simulated. (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this contribution we report the research and development of 1.55 mu m InGaAsP/InP gain-coupled DFB laser with an improved injection-carrier induced grating and of high performance 1.3 mu m and 1.55 mu m InGaAsP/InP FP and DFB lasers for communications. Long wavelength strained MQW laser diodes with a very low threshold current (7-10 mA) have been fabricated. Low pressure MOVPE technology has been employed for the preparation of the layered structure. A novel gain-coupled DFB laser structure with an improved injection-carrier modulated grating has been proposed and fabricated. The laser structures have been prepared by hybrid growth of MOVPE and LPE techniques and reasonably good characteristics have been achieved for resultant lasers. High performance 1.3 mu m and 1.55 mu m InGaAsP/InP DFB lasers have successfully been developed for CATV and trunk line optical fiber communication.
Resumo:
We have developed a novel InP-based, ridge-waveguide photonic integrated circuit (PIC), which consists of a 1.1-um wavelength Y-branch optical waveguide with low loss and improved far field pattern and a 1.3-um wavelength strained InGaAsP-InP multiple quantum-well superluminescent diode, with bundle integrated guide (BIG) as the scheme for monolithic integration. The simulations of BIG and Y-branches show low losses and improved far-field patterns, based on the beam propagation method (BPM). The amplified spontaneous emission of the device is up to 10 mW at 120 mA with no threshold and saturation. Spectral characteristics of about 30 nm width and less than I dB modulation are achieved using the built-in anti-lasing ability of Y-branch. The beam divergence angles in horizontal and vertical directions are optimized to as small as 12 degrees x8 degrees, resulting in good fiber coupling. The compactness, simplicity in fabrication, good superluminescent performance, low transmission loss and estimated low coupling loss prove the BIG and Y-branch method to be a feasible way for integration and make the photonic integrated circuit of Y-branch and superluminescent diode an promising candidate for transmitter and transceiver used in fiber optic gyroscope.
Resumo:
We propose a novel optical fiber-to-waveguide coupler for integrated optical circuits. The proper materials and structural parameters of the coupler, which is based on a slot waveguide, are carefully analyzed using a full-vectorial three dimensional mode solver. Because the effective refractive index of the mode in a silicon-on-insulator-based slot waveguide can be extremely close to that of the fiber, a highly efficient fiber-to-waveguide coupling application can be realized. For a TE-like mode, the calculated minimum mismatch loss is about 1.8dB at 1550nm, and the mode conversion loss can be less than 0.5dB. The discussion of the present state-of-the-art is also involved. The proposed coupler can be used in chip-to-chip communication.