999 resultados para Composite micromechanics
Resumo:
This work was aimed at the study of some physical properties of two current light-cured dental resin composites, Rok (hybrid) and Ice (nanohydrid). As filler they both contain strontium aluminosilicate particles, however, with different size distribution, 40 nm-2.5 mum for Rok and 10 nm-1 mum for Ice. The resin matrix of Rok consists of UDMA, that of Ice of UDMA, Bis-EMA and TEGDMA. Degree of conversion was determined by FT-IR analysis. The flexural strength and modulus were measured using a three-point bending set-up according to the ISO-4049 specification. Sorption, solubility and volumetric change were measured after storage of composites in water or ethanol/water (75 vol%) for 1 day, 7 or 30 days. Thermogravimetric analysis was performed in air and nitrogen atmosphere from 30 to 700 degrees C. Surface roughness and morphology of the composites was studied by atomic force microscopy (AFM). The degree of conversion was found to be 56.9% for Rok and 61.0% for Ice. The flexural strength of Rok does not significantly differ from that of Ice, while the flexural modulus of Rok is higher than that of Ice. The flexural strengths of Rok and Ice did not show any significant change after immersion in water or ethanol solution for 30 days. The flexural modulus of Rok and Ice did not show any significant change either after immersion in water for 30 days, while it decreased significantly, even after 1 day immersion, in ethanol solution. Ice sorbed a higher amount of water and ethanol solution than Rok and showed a higher volume increase. Thermogravimetric analysis showed that Rok contains about 80 wt% inorganic filler and Ice about 75 wt%.
Resumo:
Hydrogels, three-dimensional hydrophilic polymer networks, are appealing candidate materials for studying the cellular microenvironment as their substantial water content helps to better mimic soft tissue. However, hydrogels can lack mechanical stiffness, strength, and toughness. Composite hydrogel systems have been shown to improve upon mechanical properties compared to their singlecomponent counterparts. Poly (ethylene glycol) dimethacrylate (PEGDMA) and alginate are polymers that have been used to form hydrogels for biological applications. Singlecomponent and composite PEGDMA and alginate systems were fabricated with a range of total polymer concentrations. Bulk gels were mechanically characterized using spherical indentation testing and a viscoelastic analysis framework. An increase in shear modulus with increasing polymer concentration was demonstrated for all systems. Alginate hydrogels were shown to have a smaller viscoelastic ratio than the PEGDMA gels, indicating more extensive relaxation over time. Composite alginate and PEGDMA hydrogels exhibited a combination of the mechanical properties of the constituents, as well as a qualitative increase in toughness. Additionally, multiple hydrogel systems were produced that had similar shear moduli, but different viscoelastic behaviors. Accurate measurement of the mechanical properties of hydrogels is necessary in order to determine what parameters are key in modeling the cellular microenvironment. © 2014 The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.
Resumo:
A widely tunable fiber ring laser, utilising a SWNT/polycarbonate film mode-locker and a 3-nm tunable filter, has been realized. 2.3ps pulse generation over 27nm spectral range is achieved for a constant pump power of 25mW. © 2007 Optical Society of America.
Resumo:
A widely tunable fiber ring laser, utilising a SWNT/polycarbonate film mode-locker and a 3-nm tunable filter, has been realized. 2.3ps pulse generation over 27nm spectral range is achieved for a constant pump power of 25mW. © 2008 Optical Society of America.
Resumo:
Material production, and associated carbon emissions, could be reduced by reusing products instead of landfilling or recycling them. Steel beams are well suited to reuse, but are difficult to reuse when connected compositely to concrete slabs using welded studs. A demountable connection would allow composite performance but also permit reuse of both components at end-of-life. Three composite beams, of 2 m, 10 m and 5 m length, are constructed using M20 bolts as demountable shear connectors. The beams are tested in three-, six- and four-point bending, respectively. The former two are loaded to service, unloaded, demounted and reassembled; all three are tested to failure. The results show that all three have higher strengths than predicted using Eurocode 4. The longer specimens have performance similar to previously published comparable welded-connector composite beam results. This suggests that demountable composite beams can be safely used and practically reused, thus reducing carbon emissions. © 2013 Elsevier B.V. All rights reserved.
Resumo:
A semicrystalline composite, 3, 4, 9, 10 perylenetetracarboxylic dianhydride (PTCDA) doped N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (NPB), has been fabricated and characterized. An organic light-emitting diode using such a composite in hole injection exhibits the improved performance as compared with the reference device using neat NPB in hole injection. For example, at a luminance of 2000 cd/m(2), the former device gives a current efficiency of 2.0cd/A, higher than 1.6cd/A obtained from the latter device. Furthermore, the semicrystalline composite has been shown thermally to be more stable than the neat NPB thin film, which is useful for making organic light emitting diodes with a prolonged lifetime.
Resumo:
Via the combination of an electrospinning method with a hydrothermal reaction, a large-scale cedar-like hierarchical nanostructured TiO2 film with an anatase/rutile composite phase was fabricated.
Resumo:
A passively mode-locked diode end-pumped YVO4/Nd:YVO4 composite crystal laser with a five-mirror folded cavity was first demonstrated in this paper by using a low temperature semiconductor saturable absorber mirror grown by metal organic chemical vapor deposition. Both the Q-switching and continuous-wave mode locking operation were realized experimentally. A stable averaged output power of 10.15 W with pulse width of about 11.2-ps at a repetition rate of 113 MHz was obtained, and the optical-to-optical efficiency of 43% was achieved.
Resumo:
A passively mode-locked all-solid-state YVO4/Nd:YVO4 composite crystal laser was realized with a low temperature (LT) In0.25Ga0.75As semiconductor saturable absorber mirror. The saturable absorber was used as nonlinear absorber and output coupler simultaneously. Both the Q-switch and continous-wave mode locking operation were experimentally realized. At a pump power of 4 W, the Q-switched mode locking changed to continuous wave mode locking. An average output power of 4.1 W with 5 ps pulse width was achieved at the pump power of 12 W, corresponding to an optical-optical conversion efficiency of 34.2%.
Resumo:
Wurtzite stalactite-like quasi-one-dimensional ZnS nanoarrays with ZnO protuberances were synthesized through a thermal evaporation route. The structure and morphology of the samples are studied and the growth mechanism is discussed. X-ray diffraction (XRD) results show both the ZnS stem and the ZnO protuberances have wurtzite structure and show preferred [001] oriented growth. The photoluminescence and field emission properties have also been investigated. Room temperature photoluminescence result shows it has a strong green light emission, which has potential application for green light emitter. Experimental results also show that the stalactite arrays have a good field emission property, with turn-on field of 11.4 V/mu m, and threshold field of 16 V/mu m. The ZnO protuberances on the ZnS stem might enhance the field emission notably.
Resumo:
A diode-pumped passively mode-locked YVO4/Nd YVO4 composite crystal green laser with a semiconductor saturable absorber mirror (SESAM) and a intracavity frequency-doubling KTP crystal was realized. The maximum average output power of 2.06 W at 532 nm with a repetition rate of 100 MHz was obtained at a pump power of 15 W, corresponding to optical slop efficiency 17.2%. The 532 nm mode-locked pulse width was estimated to be approximately 18-ps.
Resumo:
Composite AlN powder, mixed with the sintering additive Y2O3, was synthesized by the direct nitridation of molten Al-Mg-Y alloys. The character of products was determined by means of electron microscopy, X-ray diffraction, granularmetric analysis and chemical composition analysis etc. The results show that the nitridation rate of the raw alloys is higher, and the nitridation products axe porous enough to be easily crushed. Composite AlN powder, obtained by the Lanxide method, has excellent characters such as high purity, especially low oxygen content, and narrow well-distributed grain size and so on.
Resumo:
We have demonstrated a passively Q-switched and mode-locked Nd:YVO4 laser with an intracavity composite semiconductor saturable absorber (ICSSA). Stable Q-switched and mode-locked pulses with Q-switched envelope pulse duration of 180 ns and pulse repetition rate of 72KHz have been obtained. The maximum average output power was 1.45W at 8W incident pump power. The repetition rate of the mode-locked pulses inside the Q-switched envelope was 154 MHz. Experimental results revealed that this ICSSA was suitable for Q-switched and mode-locked solid-state lasers. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
By using a composite semiconductor absorber and an output coupler, we demonstrated a Q-switched and mode-locked diode-pumped microchip Nd:YVO4 laser. With a 350-mu m-thick crystal, the width of the Q-switched envelope was as short as 12 ns; the repetition rate of the mode-locked pulses inside the Q-switched pulse was more than 10 GHz. The average output power was 335 mW at a maximum pump power of 1.6 W. Q-switched envelope widths of 21 and 31 ns were also achieved with crystals 0.7 and 1.0 mm thick, respectively.
Resumo:
A diode-pumped Nd:YVO4 laser passively Q switched by a semiconductor absorber is demonstrated. The Q-switched operation of the laser has an average output power of 135 mW with a 1.6 W incident pump power. The minimum pulse width is measured to be about 8.3 ns with a repetition rate of 2 MHz. To our knowledge, this is the first demonstration of a solid-state laser passively Q-switched by such a composite semiconductor absorber. (c) 2006 Optical Society of America.