937 resultados para Codes de conduite
Resumo:
There has been 47 recessions in the United States of America (US) since 1790. US recessions have increasingly affected economies of other countries in the world as nations become more and more interdependent on each other. The worst economic recession so far was the “Great Depression” – an economic recession that was caused by the 1929 crash of the stock market in the US. The 2008 economic recession in the US was a result of the burst of the “housing bubble” created by predatory lending. The economic recession resulted in increased unemployment (according to NBER 8.7 million jobs were lost from Feb. 2008 to Feb. 2010); decrease in GDP by 5.1%; increase in poverty level from 12.1% (2007) to 16.0% (2008) (NBER) This dissertation is an attempt to research the impact of the 2008 economic recession on different types of residential investments: a case study of five (5) diverse neighborhoods/zip codes in Washington DC, USA The main findings were that the effect of the 2008 economic depression on the different types of residential properties was dependent on the location of the property and the demographics/socio-economic factors associated with that location.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Alternant codes over arbitrary finite commutative local rings with identity are constructed in terms of parity-check matrices. The derivation is based on the factorization of x s - 1 over the unit group of an appropriate extension of the finite ring. An efficient decoding procedure which makes use of the modified Berlekamp-Massey algorithm to correct errors and erasures is presented. Furthermore, we address the construction of BCH codes over Zm under Lee metric.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
For any finite commutative ring B with an identity there is a strict inclusion B[X; Z(0)] subset of B[X; Z(0)] subset of B[X; 1/2(2)Z(0)] of commutative semigroup rings. This work is a continuation of Shah et al. (2011) [8], in which we extend the study of Andrade and Palazzo (2005) [7] for cyclic codes through the semigroup ring B[X; 1/2; Z(0)] In this study we developed a construction technique of cyclic codes through a semigroup ring B[X; 1/2(2)Z(0)] instead of a polynomial ring. However in the second phase we independently considered BCH, alternant, Goppa, Srivastava codes through a semigroup ring B[X; 1/2(2)Z(0)]. Hence we improved several results of Shah et al. (2011) [8] and Andrade and Palazzo (2005) [7] in a broader sense. Published by Elsevier Ltd
Resumo:
In this paper we generalize the concept of geometrically uniform codes, formerly employed in Euclidean spaces, to hyperbolic spaces. We also show a characterization of generalized coset codes through the concept of G-linear codes.
Resumo:
The Z(4)-linearity is a construction technique of good binary codes. Motivated by this property, we address the problem of extending the Z(4)-linearity to Z(q)n-linearity. In this direction, we consider the n-dimensional Lee space of order q, that is, (Z(q)(n), d(L)), as one of the most interesting spaces for coding applications. We establish the symmetry group of Z(q)(n) for any n and q by determining its isometries. We also show that there is no cyclic subgroup of order q(n) in Gamma(Z(q)(n)) acting transitively in Z(q)(n). Therefore, there exists no Z(q)n-linear code with respect to the cyclic subgroup.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we establish the connections between two different extensions of Z(4)-linearity for binary Hamming spaces, We present both notions - propelinearity and G-linearity - in the context of isometries and group actions, taking the viewpoint of geometrically uniform codes extended to discrete spaces. We show a double inclusion relation: binary G-linear codes are propelinear codes, and translation-invariant propelinear codes are G-linear codes. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Recently, minimum and non-minimum delay perfect codes were proposed for any channel of dimension n. Their construction appears in the literature as a subset of cyclic division algebras over Q(zeta(3)) only for the dimension n = 2(s)n(1), where s is an element of {0,1}, n(1) is odd and the signal constellations are isomorphic to Z[zeta(3)](n) In this work, we propose an innovative methodology to extend the construction of minimum and non-minimum delay perfect codes as a subset of cyclic division algebras over Q(zeta(3)), where the signal constellations are isomorphic to the hexagonal A(2)(n)-rotated lattice, for any channel of any dimension n such that gcd(n,3) = 1. (C) 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper introduces the concept of special subsets when applied to generator matrices based on lattices and cosets as presented by Calder-bank and Sloane. By using the special subsets we propose a non exhaustive code search for optimum codes. Although non exhaustive, the search always results in optimum codes for given (k1, V, Λ/Λ′). Tables with binary and ternary optimum codes to partitions of lattices with 8, 9 e 16 cosets, were obtained.
Resumo:
BCH codes over arbitrary finite commutative rings with identity are derived in terms of their locator vector. The derivation is based on the factorization of xs -1 over the unit ring of an appropriate extension of the finite ring. We present an efficient decoding procedure, based on the modified Berlekamp-Massey algorithm, for these codes. The code construction and the decoding procedures are very similar to the BCH codes over finite integer rings. © 1999 Elsevier B.V. All rights reserved.
Resumo:
We propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate.