898 resultados para CATIONIC LIPOSOMES
Resumo:
Resonance Raman spectroscopy has been used to probe the structures of; tetrakis(1-methylpyridinium-4-yl)-porphinatoiron(III), FeIII (T4MPyP); tetrakis(1-methylpyridium-2-yl)porphinatoiron(III), FeIII (T2MPyP); tetrakis(4-sulphonatophkenyl)porphinatoir(III), FeIII(TSPP); and tetrakis(4-carboxylatophenyl)porphinatoiron(III), FeIII(TCPP), over a wide pH range. The anionic complexes FeIII (TSPP) and FeIII (TCPP) contain high-spin iron(III) at all pHs. Both these complexes exhibit marked spectral changes at ca. pH 6 which correspond to conversion from the diaquo species, in acid solution, to hydroxy- or mu-oxo dimer complexes. Both cationic complexes show similar diaquo to high-spin hydroxy, or mu-oxo dimer, transitions at ca. pH 6. However, at pH > 11.5 for FeIII (T4MPyP) and pH > 9 for FeIII (T2MPyP) a second equilibrium process is observed, leading to two new species. One of these is readily assigned as the low-spin iron(III) dihydroxy complex by analogy with spectra of the dicyano complex. The second species is assigned to the hydroxy iron(II) complex by comparison with photo-chemically generated FeII (T4MPyP) (OH). The formation of iron(II) species in alkaline solutions of FeIII (T4MPyP) and FeIII (T2MPyP) is entirely unexpected and the significance of the observation to previous investigations of the pH-dependent behaviour of these complexes is discussed.
Resumo:
Surface reaction methodology was implicated in the optimization of hexavalent chromium removal onto lignin with respect to the process parameters. The influence of altering the conditions for removal of chromium(VI), for instance; solution pH, ionic strength, initial concentration, the dose of biosorbent, presence of other metals (Zn and Cu), presence of salts and biosorption-desorption studies, were investigated. It was found that the biosorption capacity of lignin depends on solution pH, with a maximum biosorption capacity for chromium at pH 2. Experimental equilibrium data were fitted to five different isotherm models by non-linear regression method, however, the biosorption equilibrium data were well interpreted by the Freundlich isotherm. The maximum biosorption capacities (q(max)) obtained using Dubinin-Radushkevich and Khan isotherms for Cr(VI) biosorption are 31.6 and 29.1 mg/g. respectively. Biosorption showed pseudo second order rate kinetics at different initial concentrations of Cr(VI). The intraparticle diffusion study indicated that film diffusion may be involved in the current study. The percentage removal of chromium on lignin decreased significantly in the presence of NaHCO3 and K2P2O7 salts. Desorption data revealed that nearly 70% of the Cr(VI) adsorbed on lignin could be desorbed using 0.1 M NaOH. It was evident that the biosorption mechanism involves the attraction of both hexavalent chromium (anionic) and trivalent chromium (cationic) onto the surface of lignin. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Two series of 1-alkylpyridinium and N-alkyl-N-methylpiperidinium ionic liquids fiinctionalized with a nitrile group at the end of the alkyl chain have been synthesized. Structural modifications include a change of the alkyl spacer length between the nitrile group and the heterocycle of the cationic core, as well as adding methyl or ethyl substituents on different positions of the pyridinium ring. The anions are the bromide and the bis(trifluoromethylsulfonyl)imide ion. All the bis(trifluoromethylsulfonyl)imide salts as well as the bromide salts with a long alkyl spacer were obtained as viscous liquids at room temperature, but some turned out to be supercooled liquids. In addition, pyrrolidinium and piperidinium ionic liquids with two nitrile functions attached to the heterocyclic core have been prepared. The crystal structures of seven pyridinium bis(trifluoromethylsulfonyl)imide salts are reported. Quantum chemical calculations have been performed on model cations and ion pairs with the bis(trifluoromethylsulfonyl)imide anion. A continuum model has been used to take solvation effects into account. These calculations show that the natural partial charge on the nitrogen atom of the nitrile group becomes more negative when the length of the alkyl spacer between the nitrile functional group and the heterocyclic core of the cation is increased. Methyl or methoxy substituents on the pyridinium ring slightly increase the negative charge on the nitrile nitrogen atom due to their electron-donating abilities. The position of the substituent (ortho, meta, or para) has only a very minor effect on the charge of the nitrogen atom. The N-15 NMR spectra of the bis(trifluoromethylsulfonyl)imide ionic liquids were recorded with the nitrogen-15 nucleus at its natural abundance. The chemical shift of the N-15 nucleus of the nitrile nitrogen atom could be correlated with the calculated negative partial charge on the nitrogen atom.
Resumo:
The present investigation deals with development and characteriza- tion of the liposomes-based freeze-dried rods for the vaginal delivery of gp140 antigen in mice. Positively charged, negatively charged and neutral liposomes were prepared and characterized for various parameters e.g. morphology, size, polydispersity index, zeta potential and antigen encapsulation efficiency. To further improve the efficacy of vaccine delivery, antigen encapsulated liposomes were formulated as polymer gel-based freeze-dried rods, which were then characterized for moisture content. The redispersibility of the liposomes-based freeze- dried rods was determined in simulated vaginal fluid and liposome gel was investigated for mucoadhesion. The developed liposome-based freeze-dried rods systems could offer potential as stable and practical dosage form for the mucosal immunization against HIV-1 infection.
Resumo:
Different luminescent, hydrophillic ruthenium diimine cationic complexes are rendered soluble in the hydrophobic medium of a plasticised polymer through ion-pair coupling with a hydrophobic anion, such as tetraphenyl berate. Based on this approach, a number of different oxygen sensitive films, i.e., luminescent, thin plastic films which respond to oxygen-the latter quenches the luminescence were prepared, using the polymer, cellulose acetate, plasticised with tributylphosphate. Of the resultant thin oxygen sensitive films tested, the one containing the luminescent ion-pair ruthenium (II) tris(4,7-diphenyl-1,IO-phenanthroline) ditetraphenyl berate, [Ru(dpp)(3)(2+)(Ph4B-)(2)], was found to be the most sensitive, and its response characteristics were subsequently studied as a function of plasticiser content, temperature and stability in use, and with age. The major response characteristics, i.e., film sensitivity towards oxygen and response and recovery times, depend very strongly upon the overall level of plasticiser present in film; the film is more sensitive and faster in response and recovery the greater the level of plasticiser employed. Thus, the response of the film towards oxygen can be tuned by varying the level of plasticiser in the film. Film sensitivity towards oxygen is largely independent on temperature, whereas its response and recovery times decrease with increasing temperature (E-a = -10.3+/-0.4 kJ mol(-1)). The sensitivity of a typical luminescent film is very stable when used continuously over a 24-h period, decreases by ca. 20% with age when stored at ambient temperature over a period of 29 days, but very little over the same period of time when stored in the freezer section of a fridge. (C) 1997 Elsevier Science S.A.
Resumo:
Spray-dried formulations offer an attractive delivery system for administration of drug encapsulated into liposomes to the lung, but can suffer from low encapsulation efficiency and poor aerodynamic properties. In this paper the effect of the concentration of the anti-adherent l-leucine was investigated in tandem with the protectants sucrose and trehalose. Two manufacturing methods were compared in terms of their ability to offer small liposomal size, low polydispersity and high encapsulation of the drug indometacin. Unexpectedly sucrose offered the best protection to the liposomes during the spray drying process, although formulations containing trehalose formed products with the best powder characteristics for pulmonary delivery; high glass transition values, fine powder fraction and yield. It was also found that l-leucine contributed positively to the characteristics of the powders, but that it should be used with care as above the optimum concentration of 0.5% (w/w) the size and polydispersity index increased significantly for both disaccharide formulations. The method of liposome preparation had no effect on the stability or encapsulation efficiency of spray-dried powders containing optimal protectant and anti-adherent. Using l-leucine at concentrations higher than the optimum level caused instability in the reconstituted liposomes.
Resumo:
A qualitative analysis of the cationic profile of bovine and ovine biles and of bovine, ovine and rat liver flukes has been carried out by DC are emission spectrography. A quantitative assessment of the concentrations of Na+, K+, Ca2+ and Mg2+ ions in bovine, ovine and rat flukes has been determined by atomic absorption spectrophotometry. The levels of these ions in bovine and ovine bile samples have also been assessed and compared with those of Hedon-Heig saline. The ionic composition of the two biles is similar and the concentration of each ion is greater than that in Hedon-Heig saline. Despite the similarity in biles, ion levels in bovine flukes are generally higher than those in ovine flukes. Ion levels in rat flukes are different again but show closer similarity to those in bovine, not ovine, flukes. The results are discussed in relation to the proposed operation of the osmoregulatory system in the fluke.
Resumo:
Rates of rapair of pBR 322 plasmid DNA radicals by thiols of varying net charge (Z) at pH 7 and physiological ionic strength were measured using the oxygen explosion technique. The extent of conversion of supercoiled to relaxed circular plasmid was measured by HPLC as a function of the time of oxygen exposure before or after irradiation, the time-courses being fitted by a pseudo-first-order kinetic expression with k1 = k2[RSH]. Values of k2 (M-1 S-1) were: 2.1 x 10(5) (GSH, Z = -1), 1.4 x 10(6) (2-mercaptoethanol, Z = 0), 1.2 x 10(7) (cysteamine, Z = +1), 6.6 x 10(7) (WR-1065 or N-(2-mercaptoethyl)-1,3-diamino?? propane, Z = +2). The approximately 6-fold increase in rate with each unit increase in Z is attributed to concentration of cationic thiols near DNA as a consequence of counter-ion condensation and reduced levels of anionic thiols near DNA owing to co-ion depletion. The results are quantitatively consistent with chemical repair as a significant mechanism for radioprotection of cells by neutral and cationic thiols under aerobic conditions, but indicate that repair by GSH will compete effectively with oxygen only at low oxygen tension.
Resumo:
Isolated chronic cough in childhood is a common complaint. Although the symptom cough is included in the definition of clildhood asthma, there is debate as to whether the majoritv of these children have asthma. The authors studied children with isolated chronic cough looking for evidence of airway inflammation typical of asthma, with increased numbers of airway eosinophils as assessed from bronchoalveolar lavage (BAL).
The investigations were carried out on 23 children (median age: 6.7 yrs; range: 1.7-12.75 yrs), attending the Royal Belfast Hospital for Sick Children for elective surgery, who also had a chronic unexplained cough. Written informed consent was obtained from the parent(s) and a nonbronchoscopic BAL was performed. BAL samples were analysed for total and differential white cell counts and also for the inflammatory mediators, eosinophil cationic protein (ECP) and histamine. Results were compared with a group of normal nonatopic children and also a group of atopic asthmatic children, who had been recruited for other studies on airway inflammation.
There was a small but statistically significant increase in BAL percentage eosinophils in the children with chronic cough compared with nonasthmatic controls (0.28% versus 0.10%, p=0.03). However, the children with cough had lower percentage eosinophils than the atopic asthmatic controls (0.28% versus 0.66%, p=0.01). Three out of 23 children with chronic cough had BAL eosinophils greater than the normal upper 95% reference interval in BAL. There was a small but statistically significant increase in percentage neutrophils in the children with cough compared with the nonasthmatic controls (5.85% versus 3.21%, p=0.03). Four out of the 23 children had BAL neutrophils greater than the normal upper 95% reference interval in BAL.
The authors conclude that only a minority of children with chronic unexplained cough have asthmatic-type airway inflammation. It is speculated that the increased percentage neutrophils in bronchoalveolar lavage from children with cough could relate to underlying persistent airways infection.
Resumo:
Mast cell activation by polycationic substances is believed to result from a direct activation of G protein alpha subunits and it was suggested that the adaption of amphipathic, alpha-helical conformations would allow the peptide to reach the cytosolic compartment to interact with G proteins (Mousli et al., 1994, Immunopharmacology 27, 1, for review). We investigated the histamine-releasing activity of model peptides as well as analogues of magainin 2 amide and neuropeptide Y with different amphipathicities and alpha-helix content on rat peritoneal mast cells. Amphipathic helicity is not a prerequisite for mast cell activation. Moreover, non-helical magainin peptides with high histamine-releasing activity were less active in the liberation of carboxyfluoresceine from negatively charged liposomes, indicating that peptide-induced mast cell activation and peptide-induced membrane perturbation do not correlate. In contrast to the negligible influence of the secondary structure, amino acid configuration may exert a striking influence on peptide-induced mast cell activation. Thus histamine-release by substance P was markedly impaired when the L-amino acids in the positively charged N-terminal region were replaced by D-amino acids, with [D-Arg(1)]substance P being the most inactive substance P diastereoisomer.
Resumo:
Mucosally-administered vaccine strategies are widely investigated as a promising means of preventing HIV infection. This study describes the development of liposomal gel formulations, and novel lyophilised variants, comprising HIV-1 envelope glycoprotein, CN54gp140, encapsulated within neutral, positively charged or negatively charged liposomes. The CN54gp140 liposomes were evaluated for mean vesicle diameter, polydispersity, morphology, zeta potential and antigen encapsulation efficiency before being incorporated into hydroxyethyl cellulose (HEC) aqueous gel and subsequently lyophilised to produce a rod-shaped solid dosage form for practical vaginal application. The lyophilised liposome-HEC rods were evaluated for moisture content and redispersibility in simulated vaginal fluid. Since these rods are designed to revert to gel form following intravaginal application, mucoadhesive, mechanical (compressibility and hardness) and rheological properties of the reformed gels were evaluated. The liposomes exhibited good encapsulation efficiency and the gels demonstrated suitable mucoadhesive strength. The freeze-dried liposome-HEC formulations represent a novel formulation strategy that could offer potential as stable and practical dosage form.
Resumo:
A one-pot isomerization–Claisen protocol has been developed for the synthesis of highly substituted allylsilanes. Monosilylated divinyl ethers can be isomerized using a cationic iridium(I) catalyst followed by a thermal Claisen rearrangement to provide the allylsilanes in excellent yields and diastereoselectivities.
Resumo:
Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.
Resumo:
Density, rheological properties, and conductivity of a homologous series of ammonium-based ionic liquids N-alkyl-triethylammonium bis{(trifluoromethyl) sulfonyl}imide were studied at atmospheric pressure as a function of alkyl chain length on the cation, as well as of the temperature from (293.15 to 363.15) K. From these investigations, the effect of the cation structure was quantified on each studied properties, which demonstrated, as expected, a decrease of the density and conductivity, a contrario of an increase of the viscosity with the alkyl chain length on the ammonium cation. Furthermore, rheological properties were measured for both pure and water-saturated ionic liquids. The studied ionic liquids were found to be Newtonian and non-Arrhenius. Additionally, the effect of water content in the studied ionic liquids on their viscosity was investigated by adding water until they were saturated at 293.15 K. By comparing the viscosity of pure ionic liquids with the data measured in water-saturated samples, it appears that the presence of water decreases dramatically the viscosity of ionic liquids by up to three times. An analysis of involved transport properties leads us to a classification of the studied ionic liquids in terms of their ionicity using the Walden plot, from which it is evident that they can be classified as "good" ionic liquids. Finally, from measured density data, different volumetric properties, that is, molar volumes and thermal expansion coefficients were determined as a function of temperature and of cationic structure. Based on these volumetric properties, an extension of Jacquemin's group contribution model has been then established and tested for alkylammonium-based ionic liquids within a relatively good uncertainty close to 0.1 %. © 2012 American Chemical Society.
Resumo:
Cataract surgery is one of the most commonly-practiced surgical procedures in Western medicine, and, while complications are rare, the most serious is infectious postoperative endophthalmitis. Bacteria may adhere to the implanted intraocular lens (IOL) and subsequent biofilm formation can lead to a chronic, difficult to treat infection. To date, no method to reduce the incidence of infectious endophthalmitis through bacterial elimination, while retaining optical transparency, has been reported. In this study we report a method to optimise the localisation of a cationic porphyrin at the surface of suitable acrylate copolymers, which is the first point of contact with potential pathogens. The porphyrin catalytically generates short-lived singlet oxygen, in the presence of visible light, which kills adherent bacteria indiscriminately. By restricting the photosensitiser to the surface of the biomaterial, reduction in optical transparency is minimised without affecting efficacy of singlet oxygen production. Hydrogel IOL biomaterials incorporating either methacrylic acid (MAA) or methyl methacrylate (MMA) co-monomers allow tuning of the hydrophobic and anionic properties to optimise the localisation of porphyrin. Physiochemical and antimicrobial properties of the materials have been characterised, giving candidate materials with self-generating, persistent anti-infective character against Gram-positive and Gram-negative organisms. Importantly, incorporation of porphyrin can also serve to protect the retina by filtering damaging shortwave visible light, due to the Soret absorption (?max) 430 nm). © 2012 Elsevier Ltd. All rights reserved.