961 resultados para CARBOXYL-TERMINAL FRAGMENT
Resumo:
Objectives: The effect of glucose and palmitate on the phosphorylation of proteins associated with cell growth and survival (extracellular signal-regulated kinase 1/2 [ERK1/2] and stress-activated protein kinase/c-Jun NH2-terminal kinase [SAPK/JNK]) and on the expression of immediate early genes was investigated. Methods: Groups of freshly isolated rat pancreatic islets were incubated in 10-mmol/L glucose with palmitate, LY294002, or fumonisin B1 for the measurement of the phosphorylation and the content of ERK1/2, JNK/SAPK, and v-akt murine thymoma viral oncongene (AKT) (serine 473) by immunoblotting. The expressions of the immediate early genes, c-fos and c-jun, were evaluated by reverse transcription-polymerase chain reaction. Results: Glucose at 10 mmol/L induced ERK1/2 and AKT phosphorylations and decreased SAPK/JNK phosphorylation. Palmitate (0.1 mmol/L) abolished the glucose effect on ERK1/2, AKT, and SAPK/JNK phosphorylations. LY294002 caused a similar effect. The inhibitory effect of palmitate on glucose-induced ERK1/2 and AKT phosphorylation changes was not observed in the presence of fumonisin B1. Glucose increased c-fos and decreased c-jun expressions. Palmitate and LY294002 abolished these latter glucose effects. The presence of fumonisin B1 abolished the effect induced by palmitate on c-jun expression. Conclusions: Our results suggest that short-term changes of mitogen-activated protein kinase and AKT signaling pathways and c-fos and c-jun expressions caused by glucose are abolished by palmitate through phosphatidylinositol 3-kinase inhibition via ceramide synthesis.
Resumo:
To characterize the roles of C-peptide in vascular homeostatic processes, we examined the genes regulated by C-peptide in LEII mouse lung microvascular endothelial cells. Treatment of the cells with C-peptide increased the expression of c-Jun N-terminal kinase 1 (JNK1) mRNA dose-dependently, accompanied by an increase in JNK1 protein content. Prior treatment of the cells with PD98059, an ERK kinase inhibitor or SB203580, a p38MAPK inhibitor, abrogated the C-peptide-elicited JNK1 mRNA expression. These results indicate that C-peptide increases JNK1 protein levels, possibly through ERK- and p38MAPK-dependent activation of JNK. gene transcription.
Resumo:
There is evidence that pro-opiomelanocortin (POMC)-derived peptides other than adrenocorticotropic hormone (ACTH) have a role in adrenal cell proliferation. We compared the activity of synthetic rat N-terminal POMC fragment 1-28 with disulfide bridges (N-POMC(w)) and without disulfide bridges (N-POMC(w/o)), with the activity of fibroblast growth factor (FGF2), a widely studied adrenal growth factor, and ACTH, in well-characterized pure cultures of both isolated adrenal Glomerulosa (G) and Fasciculata/Reticularis (F/R) cells. Three days of FGF2-treatment had a proliferative effect similar to serum, and synthetic peptide N-POMC(w) induced proliferation more efficiently than N-POMC(w/o). Moreover, both induced proliferation via the ERK1/2 pathway. In contrast, sustained ACTH treatment decreased proliferation and viability through apoptosis induction, but not necrosis, and independently of PKA and PKC pathways. Further elucidation of 1-28 POMC signal transduction is of interest, and primary cultures of adrenal cells were found to be useful for examining the trophic activity of this peptide.
Resumo:
The oral pathogen Streptococcus mutans expresses a surface protein, P1, which interacts with the salivary pellicle on the tooth surface or with fluid-phase saliva, resulting in bacterial adhesion or aggregation, respectively. P1 is a target of protective immunity. Its N-terminal region has been associated with adhesion and aggregation functions and contains epitopes recognized by efficacious antibodies. In this study, we used Bacillus subtilis, a gram-positive expression host, to produce a recombinant N-terminal polypeptide of P1 (P1(39-512)) derived from the S. mutans strain UA159. Purified P1(39-512) reacted with an anti-full-length P1 antiserum as well as one raised against intact S. mutans cells, indicating preserved antigenicity. Immunization of mice with soluble and heat-denatured P1(39-512) induced antibodies that reacted specifically with native P1 on the surface of S. mutans cells. The anti-P1(39-512) antiserum was as effective at blocking saliva-mediated aggregation of S. mutans cells and better at blocking bacterial adhesion to saliva-coated plastic surfaces compared with the anti-full-length P1 antiserum. In addition, adsorption of the anti-P1 antiserum with P1(39-512) eliminated its ability to block the adhesion of S. mutans cells to abiotic surfaces. The present results indicate that P1(39-512), expressed and purified from a recombinant B. subtilis strain, maintains important immunological features of the native protein and represents an additional tool for the development of anticaries vaccines.
Resumo:
Trypanosoma cruzi and Trypanosoma rangeli are human-infective blood parasites, largely restricted to Central and South America. They also infect a wide range of wild and domestic mammals and are transmitted by a numerous species of triatomine bugs. There are significant overlaps in the host and geographical ranges of both species. The two species consist of a number of distinct phylogenetic lineages. A range of PCR-based techniques have been developed to differentiate between these species and to assign their isolates into lineages. However, the existence of at least six and five lineages within T. cruzi and T. rangeli, respectively, makes identification of the full range of isolates difficult and time consuming. Here we have applied fluorescent fragment length barcoding (FFLB) to the problem of identifying and genotyping T. cruzi, T. rangeli and other South American trypanosomes. This technique discriminates species on the basis of length polymorphism of regions of the rDNA locus. FFLB was able to differentiate many trypanosome species known from South American mammals: T. cruzi cruzi. T. cruzi marinkellei, T. dionisii-like, T. evansi, T. lewisi, T. rangeli, T. theileri and T. vivax. Furthermore, all five T. rangeli lineages and many T. cruzi lineages could be identified, except the hybrid lineages TcV and TcVI that could not be distinguished from lineages III and II respectively. This method also allowed identification of mixed infections of T. cruzi and T. rangeli lineages in naturally infected triatomine bugs. The ability of FFLB to genotype multiple lineages of T. cruzi and T. rangeli together with other trypanosome species, using the same primer sets is an advantage over other currently available techniques. Overall, these results demonstrate that FFLB is a useful method for species diagnosis, genotyping and understanding the epidemiology of American trypanosomes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Proteinase-activated receptors (PAR) are widely recognized for their modulatory properties in inflammatory and immune responses; however, their direct role on phagocyte effector functions remains unknown. S100A9, a protein secreted during inflammatory responses, deactivates activated peritoneal macrophages, and its C-terminal portion inhibits spreading and phagocytosis of adherent peritoneal cells. Herein, the effect of PAR1 and PAR2 agonists was investigated on spreading and phagocytosis by adherent peritoneal cells, as well as the ability of murine C-terminal of S100A9 peptide (mS100A9p) to modulate this effect. Adherent peritoneal cells obtained from mouse abdominal cavity were incubated with PAR1 and PAR2 agonists and spreading and phagocytosis of Candida albicans particles were evaluated. PAR1 agonists increased both the spreading and the phagocytic activity, but PAR2 agonists only increased the spreading index. mS100A9p reverted both the increased spreading and phagocytosis induced by PAR1 agonists, but no interference in the increased spreading induced by PAR2 agonists was noticed. The shorter homologue peptide to the C-terminal of mS100A9p, corresponding to the H(92)-E(97) region, also reverted the increased spreading and phagocytosis induced by PAR1 agonists. These findings show that proteinase-activated receptors have an important role for spreading and phagocytosis of adherent peritoneal cells, and that the pepticle corresponding to the C-terminal of S100A9 protein is a remarkable candidate for use as a novel compound to modulate PAR1 function. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Recent experiments have shown that the multimode approach for describing the fission process is compatible with the observed results. Asystematic analysis of the parameters obtained by fitting the fission-fragment mass distribution to the spontaneous and low-energy data has shown that the values for those parameters present a smooth dependence upon the nuclear mass number. In this work, a new methodology is introduced for studying fragment mass distributions through the multimode approach. It is shown that for fission induced by energetic probes (E > 30 MeV) the mass distribution of the fissioning nuclei produced during the intranuclear cascade and evaporation processes must be considered in order to have a realistic description of the fission process. The method is applied to study (208)Pb, (238)U, (239)Np and (241)Am fission induced by protons or photons.
Resumo:
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final and dedicated step in the synthesis of triacylglycerol, which is believed to involve the lipids oleoyl coenzyme A (OCoA) and dioleoyl-sn-glycerol (DOG) as substrates. In this work we investigated the interaction of a specific peptide, referred to as SIT2, on the C-terminal of DGAT1 (HKWCIRHFYKP) with model membranes made with OCoA and DOG in Langmuir monolayers and liposomes. According to the circular dichroism and fluorescence data, conformational changes on SIT2 were seen only on liposomes containing OCoA and DOG. In Langmuir monolayers, SIT2 causes the isotherms of neat OCoA and DOG monolayers to be expanded, but has negligible effect on mixed monolayers of OCoA and DOG. This synergistic interaction between SIT2 and DOG + OCoA may be rationalized in terms of a molecular model in which SIT2 may serve as a linkage between the two lipids. Our results therefore provide molecular-level evidence for the interaction between this domain and the substrates OCoA and DOG for the synthesis of triacylglycerol. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We wish to report here our initial efforts toward the total synthesis of the potent antitumor agent dictyostatin, describing a short and efficient synthesis of the C11-C23 fragment. ( (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
Inhibition of microtubule function is an attractive rational approach to anticancer therapy. Although taxanes are the most prominent among the microtubule-stabilizers, their clinical toxicity, poor pharmacokinetic properties, and resistance have stimulated the search for new antitumor agents having the same mechanism of action. Discodermolide is an example of nontaxane natural product that has the same mechanism of action, demonstrating superior antitumor efficacy and therapeutic index. The extraordinary chemical and biological properties have qualified discodermolide as a lead structure for the design of novel anticancer agents with optimized therapeutic properties. In the present work, we have employed a specialized fragment-based method to develop robust quantitative structure - activity relationship models for a series of synthetic discodermolide analogs. The generated molecular recognition patterns were combined with three-dimensional molecular modeling studies as a fundamental step on the path to understanding the molecular basis of drug-receptor interactions within this important series of potent antitumoral agents.
Resumo:
Worldwide, tuberculosis (TB) is the leading cause of death among curable infectious diseases. Multidrug-resistant Mycobacterium tuberculosis is an emerging problem of great importance to public health, and there is an urgent need for new anti-TB drugs. In the present work, classical 2D quantitative structure-activity relationships (QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 91 isoniazid derivatives. Significant statistical models (classical QSAR, q(2) = 0.68 and r(2) = 0.72; HQSAR, q(2) = 0.63 and r(2) = 0.86) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 24 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, r(pred)(2) = 0.87; classical QSAR, r(pred)(2) = 0.75).
Resumo:
Cyclic imides have been widely employed in drug design research due to their multiple pharmacological and biological properties. In the present study, two-dimensional quantitative structure-activity relationship (2D QSAR) studies were conducted on a series of potent analgesic cyclic imides using both classical and hologram QSAR (HQSAR) methods, yielding significant statistical models (classical QSAR, q(2) = 0.80; HQSAR, q(2) = 0.84). The models were then used to evaluate an external data test, and the predicted values were in good agreement with the experimental results, indicating their consistency for untested compounds.
Resumo:
Alzheimer`s disease is an ultimately fatal neurodegenerative disease, and BACE-1 has become an attractive validated target for its therapy, with more than a hundred crystal structures deposited in the PDB. In the present study, we present a new methodology that integrates ligand-based methods with structural information derived from the receptor. 128 BACE-1 inhibitors recently disclosed by GlaxoSmithKline R&D were selected specifically because the crystal structures of 9 of these compounds complexed to BACE-1, as well as five closely related analogs, have been made available. A new fragment-guided approach was designed to incorporate this wealth of structural information into a CoMFA study, and the methodology was systematically compared to other popular approaches, such as docking, for generating a molecular alignment. The influence of the partial charges calculation method was also analyzed. Several consistent and predictive models are reported, including one with r (2) = 0.88, q (2) = 0.69 and r (pred) (2) = 0.72. The models obtained with the new methodology performed consistently better than those obtained by other methodologies, particularly in terms of external predictive power. The visual analyses of the contour maps in the context of the enzyme drew attention to a number of possible opportunities for the development of analogs with improved potency. These results suggest that 3D-QSAR studies may benefit from the additional structural information added by the presented methodology.
Resumo:
The Punta del Este Terrane (eastern Uruguay) lies in a complex Neoproterozoic (Brasiliano/Pan-African) orogenic zone considered to contain a suture between South American terranes to the west of Major Gercino-Sierra Ballena Suture Zone and eastern African affinities terranes. Zircon cores from Punta del Este Terrane basement orthogneisses have U-Pb ages of ca. 1,000 Ma, which indicate an lineage with the Namaqua Belt in Southwestern Africa. U-Pb zircon ages also provide the following information on the Punta del Este terrane: the orthogneisses containing the ca. 1,000 Ma inheritance formed at ca. 750 Ma; in contrast to the related terranes now in Africa, reworking of the Punta del Este Terrane during Brasiliano/Pan-African orogenesis was very intense, reaching granulite facies at ca. 640 Ma. The termination of the Brasiliano/Pan-African orogeny is marked by formation of acid volcanic and volcanoclastic rocks at ca. 570 Ma (Sierra de Aguirre Formation), formation of late sedimentary basins (San Carlos Formation) and then intrusion at ca. 535 Ma of post-tectonic granitoids (Santa Teresa and Jos, Ignacio batholiths). The Punta del Este Terrane and unrelated western terranes represented by the Dom Feliciano Belt and the Rio de La Plata Craton were in their present positions by ca. 535 Ma.
Resumo:
Tropomyosin (Tm) is a dimeric coiled-coil protein that polymerizes through head-to-tail interactions. These polymers bind along actin filaments and play an important role in the regulation of muscle contraction. Analysis of its primary structure shows that Tm is rich in acidic residues, which are clustered along the molecule and may from sites for divalent cation binding. In a previous study, we showed that the Mg(2+)-induced increase in stability of the C-terminal half of Tin is sensitive to imitations near the C-terminus. In the present report, we study the interaction between Mg(2+) and full-length Tin and smaller fragments corresponding to the last 65 and 26 Tin residues. Although the smaller Tin peptide (Tm(259-284(W269))) is flexible and to large extent unstructured, the larger Tm(220-284(W269)) fragments forms a coiled coil in solution whose stability increases significantly in the presence of Mg(2+). NMR analysis shows thin Mg(2+) induces chemical shift perturbations in both Tm(220-284(W269)) and Tm(259-284(W269)) in the vicinity of His276, in which are located several negatively charged residues. (C) 2009 Wiley Periodicals, Inc. Biopolymers 91: 583-590, 2009.