971 resultados para A salvagem perdiçao: erro e ruína na Ilíada
Resumo:
In this work calibration models were constructed to determine the content of total lipids and moisture in powdered milk samples. For this, used the near-infrared spectroscopy by diffuse reflectance, combined with multivariate calibration. Initially, the spectral data were submitted to correction of multiplicative light scattering (MSC) and Savitzsky-Golay smoothing. Then, the samples were divided into subgroups by application of hierarchical clustering analysis of the classes (HCA) and Ward Linkage criterion. Thus, it became possible to build regression models by partial least squares (PLS) that allowed the calibration and prediction of the content total lipid and moisture, based on the values obtained by the reference methods of Soxhlet and 105 ° C, respectively . Therefore, conclude that the NIR had a good performance for the quantification of samples of powdered milk, mainly by minimizing the analysis time, not destruction of the samples and not waste. Prediction models for determination of total lipids correlated (R) of 0.9955, RMSEP of 0.8952, therefore the average error between the Soxhlet and NIR was ± 0.70%, while the model prediction to content moisture correlated (R) of 0.9184, RMSEP, 0.3778 and error of ± 0.76%
Resumo:
In distance learning degree in Chemistry in full of the Secretária de Educação a distância da Universidade Federal do Rio Grande do Norte (SEDIS / UFRN). The teacher-tutor to establish the experimental subjects closer relationships with students, mediating the pedagogical actions that develop in the distance learning course, with a view to achieving the principles of autonomy and learning, contributing to the creation of learning environments collaborative, guided by affection.The article presents the results of an empirical research on affectivity in practice this tutorial experimental classes in higher distance education in the full degree course in Chemistry Polo Currais Novos/ RN, held between 2009 and 2010. The study is based on qualitative methodology, whose data were collected through questionnaires and semi-structured interviews with 48 (forty eight) students involved in distance learning courses and selected in order to compose a group of subjects who showed variability, as guidelines that guide the sampling procedures in qualitative research. The results, based on category theory and empirical analysis of data from the interviews were supplemented by information obtained from participant observation which also served to guide the data collection of the corpus of this work. With the results we understand that there is clarity about what characterizes a loving relationship between those involved in the process of teaching and learning in experimental classes in high school chemistry Distance Education. Furthermore, it was also clear that the communication process in dialogic teaching and learning in higher distance education in chemistry at the trial need to mark out in balanced affective attitudes, the experimental error that value and respect the many possible construction of knowledge by movements social interaction of individual and collective
Resumo:
In distance learning degree in Chemistry in full of the Secretária de Educação a distância da Universidade Federal do Rio Grande do Norte (SEDIS / UFRN). The teacher-tutor to establish the experimental subjects closer relationships with students, mediating the pedagogical actions that develop in the distance learning course, with a view to achieving the principles of autonomy and learning, contributing to the creation of learning environments collaborative, guided by affection.The article presents the results of an empirical research on affectivity in practice this tutorial experimental classes in higher distance education in the full degree course in Chemistry Polo Currais Novos/ RN, held between 2009 and 2010. The study is based on qualitative methodology, whose data were collected through questionnaires and semi-structured interviews with 48 (forty eight) students involved in distance learning courses and selected in order to compose a group of subjects who showed variability, as guidelines that guide the sampling procedures in qualitative research. The results, based on category theory and empirical analysis of data from the interviews were supplemented by information obtained from participant observation which also served to guide the data collection of the corpus of this work. With the results we understand that there is clarity about what characterizes a loving relationship between those involved in the process of teaching and learning in experimental classes in high school chemistry Distance Education. Furthermore, it was also clear that the communication process in dialogic teaching and learning in higher distance education in chemistry at the trial need to mark out in balanced affective attitudes, the experimental error that value and respect the many possible construction of knowledge by movements social interaction of individual and collective
Resumo:
This work is combined with the potential of the technique of near infrared spectroscopy - NIR and chemometrics order to determine the content of diclofenac tablets, without destruction of the sample, to which was used as the reference method, ultraviolet spectroscopy, which is one of the official methods. In the construction of multivariate calibration models has been studied several types of pre-processing of NIR spectral data, such as scatter correction, first derivative. The regression method used in the construction of calibration models is the PLS (partial least squares) using NIR spectroscopic data of a set of 90 tablets were divided into two sets (calibration and prediction). 54 were used in the calibration samples and the prediction was used 36, since the calibration method used was crossvalidation method (full cross-validation) that eliminates the need for a validation set. The evaluation of the models was done by observing the values of correlation coefficient R 2 and RMSEC mean square error (calibration error) and RMSEP (forecast error). As the forecast values estimated for the remaining 36 samples, which the results were consistent with the values obtained by UV spectroscopy
Resumo:
In this work, the quantitative analysis of glucose, triglycerides and cholesterol (total and HDL) in both rat and human blood plasma was performed without any kind of pretreatment of samples, by using near infrared spectroscopy (NIR) combined with multivariate methods. For this purpose, different techniques and algorithms used to pre-process data, to select variables and to build multivariate regression models were compared between each other, such as partial least squares regression (PLS), non linear regression by artificial neural networks, interval partial least squares regression (iPLS), genetic algorithm (GA), successive projections algorithm (SPA), amongst others. Related to the determinations of rat blood plasma samples, the variables selection algorithms showed satisfactory results both for the correlation coefficients (R²) and for the values of root mean square error of prediction (RMSEP) for the three analytes, especially for triglycerides and cholesterol-HDL. The RMSEP values for glucose, triglycerides and cholesterol-HDL obtained through the best PLS model were 6.08, 16.07 e 2.03 mg dL-1, respectively. In the other case, for the determinations in human blood plasma, the predictions obtained by the PLS models provided unsatisfactory results with non linear tendency and presence of bias. Then, the ANN regression was applied as an alternative to PLS, considering its ability of modeling data from non linear systems. The root mean square error of monitoring (RMSEM) for glucose, triglycerides and total cholesterol, for the best ANN models, were 13.20, 10.31 e 12.35 mg dL-1, respectively. Statistical tests (F and t) suggest that NIR spectroscopy combined with multivariate regression methods (PLS and ANN) are capable to quantify the analytes (glucose, triglycerides and cholesterol) even when they are present in highly complex biological fluids, such as blood plasma
Resumo:
Due to its physico-chemical and biological properties, related to the abundance and low cost of raw material, chitosan has been recognized as a material of wide application in various fields, such as in drug delivery systems. Many of these properties are associated with the presence of amino groups in its polymer chain. A proper determination of these amino groups is very important, in order to properly specify if a given chitosan sample can be used in a particular application. Thus, in this work, initially, a comparison between the determination of the deacetylation degree by conductometry and elemental analysis was carried out using a detailed analysis of error propagation. It was shown that the conductometric analysis resulted in a simple and safe method for the determining the degree of deacetylation of chitosan. Subsequently, experiments were performed to monitor and characterize the adsorption of tetracycline on chitosan particles through kinetic and equilibrium studies. The main models of kinetics and adsorption isotherms, widely used to describe the adsorption on wastewater treatment systems and the drug loading, were used to treat the experimental data. Firstly, it was shown that an apparent linear t/q(t) × t relationship did not imply in a pseudo-second-order adsorption kinetics, differently of what has been repeatedly reported in the literature. It was found that this misinterpretation can be avoided by using non-linear regression. Finally, the adsorption of tetracycline on chitosan particles was analyzed using insights obtained from theoretical analysis, and the parameters generated were used to analyze the kinetics of adsorption, the isotherm of adsorption and to ropose a mechanism of adsorption
Resumo:
The aim of this study was to evaluate the potential of near-infrared reflectance spectroscopy (NIRS) as a rapid and non-destructive method to determine the soluble solid content (SSC), pH and titratable acidity of intact plums. Samples of plum with a total solids content ranging from 5.7 to 15%, pH from 2.72 to 3.84 and titratable acidity from 0.88 a 3.6% were collected from supermarkets in Natal-Brazil, and NIR spectra were acquired in the 714 2500 nm range. A comparison of several multivariate calibration techniques with respect to several pre-processing data and variable selection algorithms, such as interval Partial Least Squares (iPLS), genetic algorithm (GA), successive projections algorithm (SPA) and ordered predictors selection (OPS), was performed. Validation models for SSC, pH and titratable acidity had a coefficient of correlation (R) of 0.95 0.90 and 0.80, as well as a root mean square error of prediction (RMSEP) of 0.45ºBrix, 0.07 and 0.40%, respectively. From these results, it can be concluded that NIR spectroscopy can be used as a non-destructive alternative for measuring the SSC, pH and titratable acidity in plums
Resumo:
The calculation of tooth mass discrepancy, essential for good planning and a proper orthodontic finishing, when performed manually, besides being laborious, requires considerable time consumption. The aim of this study was to develop and test Bolton Freeware, a software for analysis of the tooth mass discrepancy of Bolton, aiming to minimize the consumption of time in a less onerous way. The digital analysis of the software was done by means of two-dimensional scanning of plaster study models and compared to manual evaluation (gold standard), using 75 pairs of stone plaster study models divided into two groups according to the magnitude of the Curve of Spee (group I from 0 to 2 mm, group II greater than 2 to 3mm). All the models had permanent dentition and were in perfect condition. The manual evaluation was performed with a digital caliper and a calculator, and the time required to perform the analysis for both methods was recorded and compared. In addition, the software was evaluated by orthodontists regarding its use, by means of questionnaires developed specifically for this purpose. Calibration was performed prior to manual analysis, and excellent levels of inter-rater agreement were achieved, with ICC > 0.75 and r > 0.9 for total and anterior proportion. It was observed in the evaluation of error of the digital method that some teeth showed a significant systematic error, being the highest measured at 0.08 mm. The analysis of total tooth mass discrepancy performed by Bolton Freeware, for those cases in which the curve of Spee is mild and moderate, differ from manual analysis, on average, 0.09 mm and 0.07 mm respectively, for each tooth evaluated, with r> 0, 8 for total and anterior proportion. According to the specificity and sensitivity test, Bolton Freeware has an improved ability to detect true negatives, i.e. the presence of discrepancy. The Bolton analysis digitally performed was faster, with an average difference of time consumed to perform the analysis of Bolton between the two methods of approximately 6 minutes. Most experts interviewed (93%) approved the usability of the software
Resumo:
Context-aware applications are typically dynamic and use services provided by several sources, with different quality levels. Context information qualities are expressed in terms of Quality of Context (QoC) metadata, such as precision, correctness, refreshment, and resolution. On the other hand, service qualities are expressed via Quality of Services (QoS) metadata such as response time, availability and error rate. In order to assure that an application is using services and context information that meet its requirements, it is essential to continuously monitor the metadata. For this purpose, it is needed a QoS and QoC monitoring mechanism that meet the following requirements: (i) to support measurement and monitoring of QoS and QoC metadata; (ii) to support synchronous and asynchronous operation, thus enabling the application to periodically gather the monitored metadata and also to be asynchronously notified whenever a given metadata becomes available; (iii) to use ontologies to represent information in order to avoid ambiguous interpretation. This work presents QoMonitor, a module for QoS and QoC metadata monitoring that meets the abovementioned requirement. The architecture and implementation of QoMonitor are discussed. To support asynchronous communication QoMonitor uses two protocols: JMS and Light-PubSubHubbub. In order to illustrate QoMonitor in the development of ubiquitous application it was integrated to OpenCOPI (Open COntext Platform Integration), a Middleware platform that integrates several context provision middleware. To validate QoMonitor we used two applications as proofof- concept: an oil and gas monitoring application and a healthcare application. This work also presents a validation of QoMonitor in terms of performance both in synchronous and asynchronous requests
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVOS: analisar o desempenho de escolares de 2ª a 5ª série do ensino fundamental em provas de habilidades metalinguísticas e leitura segundo critérios psicolinguísticos e cognitivo-linguísticos e verificar similaridade e diferenças entre as análises. MÉTODOS: participaram 120 escolares de 2ª a 5ª série do ensino municipal, de ambos os gêneros, na faixa etária de sete a 12 anos de idade, divididos em 4 grupos de 30 escolares de cada série. Os escolares foram submetidos à aplicação de provas de habilidades metalinguísticas e de leitura. RESULTADOS: houve diferença estatisticamente significante entre os grupos nas habilidades metalinguísticas, nas regras de decodificação de palavras reais e pseudopalavras para todas as variáveis na leitura de palavras reais, com exceção do erro tipo Recusas, com médias superiores para Tentativas de Som Mal Sucedidas e Falha na Aplicação de Regras Ortográficas, indicando que esses tipos de erros foram os de maior ocorrência. Na leitura de pseudopalavras houve diferença estatisticamente significante em Tentativas de Som Mal Sucedidas, indicando que os escolares apresentaram desempenho inferior na decodificação de palavras que exigiram a utilização de informação fonológica. CONCLUSÃO: a adoção de critérios psicolinguísticos ou cognitivo-linguísticos na avaliação da leitura de palavras e pseudopalavras juntamente com a avaliação das habilidades metalinguísticas fornecem subsídios para a compreensão de como o escolar vem processando os complexos princípios do sistema de escrita do português do Brasil, além de dar o suporte necessário à compreensão das dificuldades específicas apresentadas pelos escolares, orientando o profissional fonoaudiólogo em relação aos objetivos precisos no seu atendimento.
Resumo:
Na computação científica é necessário que os dados sejam o mais precisos e exatos possível, porém a imprecisão dos dados de entrada desse tipo de computação pode estar associada às medidas obtidas por equipamentos que fornecem dados truncados ou arredondados, fazendo com que os cálculos com esses dados produzam resultados imprecisos. Os erros mais comuns durante a computação científica são: erros de truncamentos, que surgem em dados infinitos e que muitas vezes são truncados", ou interrompidos; erros de arredondamento que são responsáveis pela imprecisão de cálculos em seqüências finitas de operações aritméticas. Diante desse tipo de problema Moore, na década de 60, introduziu a matemática intervalar, onde foi definido um tipo de dado que permitiu trabalhar dados contínuos,possibilitando, inclusive prever o tamanho máximo do erro. A matemática intervalar é uma saída para essa questão, já que permite um controle e análise de erros de maneira automática. Porém, as propriedades algébricas dos intervalos não são as mesmas dos números reais, apesar dos números reais serem vistos como intervalos degenerados, e as propriedades algébricas dos intervalos degenerados serem exatamente as dos números reais. Partindo disso, e pensando nas técnicas de especificação algébrica, precisa-se de uma linguagem capaz de implementar uma noção auxiliar de equivalência introduzida por Santiago [6] que ``simule" as propriedades algébricas dos números reais nos intervalos. A linguagem de especificação CASL, Common Algebraic Specification Language, [1] é uma linguagem de especificação algébrica para a descrição de requisitos funcionais e projetos modulares de software, que vem sendo desenvolvida pelo CoFI, The Common Framework Initiative [2] a partir do ano de 1996. O desenvolvimento de CASL se encontra em andamento e representa um esforço conjunto de grandes expoentes da área de especificações algébricas no sentido de criar um padrão para a área. A dissertação proposta apresenta uma especificação em CASL do tipo intervalo, munido da aritmética de Moore, afim de que ele venha a estender os sistemas que manipulem dados contínuos, sendo possível não só o controle e a análise dos erros de aproximação, como também a verificação algébrica de propriedades do tipo de sistema aqui mencionado. A especificação de intervalos apresentada aqui foi feita apartir das especificações dos números racionais proposta por Mossakowaski em 2001 [3] e introduz a noção de igualdade local proposta por Santiago [6, 5, 4]
Resumo:
Despite the emergence of other forms of artificial lift, sucker rod pumping systems remains hegemonic because of its flexibility of operation and lower investment cost compared to other lifting techniques developed. A successful rod pumping sizing necessarily passes through the supply of estimated flow and the controlled wear of pumping equipment used in the mounted configuration. However, the mediation of these elements is particularly challenging, especially for most designers dealing with this work, which still lack the experience needed to get good projects pumping in time. Even with the existence of various computer applications on the market in order to facilitate this task, they must face a grueling process of trial and error until you get the most appropriate combination of equipment for installation in the well. This thesis proposes the creation of an expert system in the design of sucker rod pumping systems. Its mission is to guide a petroleum engineer in the task of selecting a range of equipment appropriate to the context provided by the characteristics of the oil that will be raised to the surface. Features such as the level of gas separation, presence of corrosive elements, possibility of production of sand and waxing are taken into account in selecting the pumping unit, sucker-rod strings and subsurface pump and their operation mode. It is able to approximate the inferente process in the way of human reasoning, which leads to results closer to those obtained by a specialist. For this, their production rules were based on the theory of fuzzy sets, able to model vague concepts typically present in human reasoning. The calculations of operating parameters of the pumping system are made by the API RP 11L method. Based on information input, the system is able to return to the user a set of pumping configurations that meet a given design flow, but without subjecting the selected equipment to an effort beyond that which can bear
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)