990 resultados para supply function competition
Resumo:
We study quadratic perturbations of the integrable system (1+x)dH; where H =(x²+y²)=2: We prove that the first three Melnikov functions associated to the perturbed system give rise at most to three limit cycles.
Resumo:
This paper characterizes the equilibria in airline networks and their welfare implications in an unregulated environment. Competing airlines may adopt either fully-connected (FC) or hub-and-spoke (HS) network structures; and passengers exhibiting low brand loyalty to their preferred carrier choose an outside option to travel so that markets are partially served by airlines. In this context, carriers adopt hubbing strategies when costs are sufficiently low, and asymmetric equilibria where one carrier chooses a FC strategy and the other chooses a HS strategy may arise. Quite interestingly, flight frequency can become excessive under HS network configurations.
Resumo:
The relationship between competition and performance-related pay has been analysed in single-principal-single-agent models. While this approach yields good predictions for managerial pay schemes, the predictions fail to apply for employees at lower tiers of a firm's hierarchy. In this paper, a principal-multi-agent model of incentive pay is developed which makes it possible to analyze the effect of changes in the competitiveness of markets on lower tier incentive payment schemes. The results explain why the payment schemes of agents located at low and mid tiers are less sensitive to changes in competition when aggregated firm data is used. JEL classification numbers: D82, J21, L13, L22. Keywords: Cournot competition, Contract delegation, Moral hazard, Entry, Market size, Wage cost.
Resumo:
Using a newly constructed data set, we calculate quality-adjusted price indexes after estimating hedonic price regressions from 1988 to 2004 in the Spanish automobile market. The increasing competition was favoured by the removal of trade restrictions and the special plans for the renewal of the Spanish automobile fleet. We find that the increasing degree of competition during those years led to an overall drop in automobile prices by 20 percent which implied considerable consumer gains thanks to higher market efficiency. Additionally, our results indicate that loyalty relevance and discrepancies in automobile reliability declined during those years. This is captured.
Resumo:
We study a retail benchmarking approach to determine access prices for interconnected networks. Instead of considering fixed access charges as in the existing literature, we study access pricing rules that determine the access price that network i pays to network j as a linear function of the marginal costs and the retail prices set by both networks. In the case of competition in linear prices, we show that there is a unique linear rule that implements the Ramsey outcome as the unique equilibrium, independently of the underlying demand conditions. In the case of competition in two-part tariffs, we consider a class of access pricing rules, similar to the optimal one under linear prices but based on average retail prices. We show that firms choose the variable price equal to the marginal cost under this class of rules. Therefore, the regulator (or the competition authority) can choose one among the rules to pursue additional objectives such as consumer surplus, network covera.
Resumo:
Reduced re'nal function has been reported with tenofovir disoproxil fumarate (TDF). It is not clear whether TDF co-administered with a boosted protease inhibitor (PI) leads to a greater decline in renal function than TDF co-administered with a non-nucleoside reverse transcriptase inhibitor (NNRTI).Methods: We selected ail antiretroviral therapy-naive patients in the Swiss HIV Cohort Study (SHCS) with calibrated or corrected serum creatinine measurements starting antiretroviral therapy with TDF and either efavirenz (EFV) or the ritonavir-boosted PIs, lopinavir (LPV/r) or atazanavir (ATV/r). As a measure of renal function, we used the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation to estimate the glomerular filtration rate (eGFR). We calculated the difference in eGFR over time between two therapies using a marginal model for repeated measures. In weighted analyses, observations were weighted by the product of their point of treatment and censoring weights to adjust for differences both in the sort of patients starting each therapy and in the sort of patients remaining on each therapy over time.Results: By March 2011, 940 patients with at least one creatinine measurement on a first therapy with either TDF and EFV (n=484), TDF and LPVlr (n=269) or TDF and ATV/r (n=187) had been followed for a median of 1. 7, 1.2 and 1.3 years, respectively. Table 1 shows the difference in average estimated GFR (eGFR) over time since starting cART for two marginal models. The first model was not adjusted for potential confounders; the second mode! used weights to adjust for confounders. The results suggest a greater decline in renal function during the first 6 months if TDF is used with a PI rather than with an NNRTI, but no further difference between these therapies after the first 6 months. TDF and ATV/r may lead to a greater decline in the first 6 months than TDF and LPVlr.Conclusions: TDF co-administered with a boosted PI leads to a greater de cline in renal function over the first 6 months of therapy than TDF co-administered with an NNRTI; this decline may be worse with ATV/r than with LPV/r.
Resumo:
Sulfur (S) is an essential macronutrient for all living organisms. Plants require large amounts of sulfate for growth and development, and this serves as a major entry point of sulfate into the food web. Plants acquire S in its ionic form from the soil; they have evolved tightly controlled mechanisms for the regulation of sulfate uptake in response to its external and internal availability. In the model plant Arabidopsis thaliana, the first key step in sulfate uptake is presumed to be carried out exclusively by only two high-affinity sulfate transporters: SULTR1;1 and SULTR1;2. A better understanding of the mode of regulation for these two transporters is crucial because they constitute the first determinative step in balancing sulfate in respect to its supply and demand. Here, we review the recent progress achieved in our comprehension of (i) mechanisms that regulate these two high-affinity sulfate transporters at the transcriptional and post-transcriptional levels, and (ii) their structure-function relationship. Such progress is important to enable biotechnological and agronomic strategies aimed at enhancing sulfate uptake and improving crop yield in S-deficient soils.
Resumo:
NKG2D is an activation receptor that allows natural killer (NK) cells to detect diseased host cells. The engagement of NKG2D with corresponding ligand results in surface modulation of the receptor and reduced function upon subsequent receptor engagement. However, it is not clear whether in addition to modulation the NKG2D receptor complex and/or its signaling capacity is preserved. We show here that the prolonged encounter with tumor cell-bound, but not soluble, ligand can completely uncouple the NKG2D receptor from the intracellular mobilization of calcium and the exertion of cell-mediated cytolysis. However, cytolytic effector function is intact since NKG2D ligand-exposed NK cells can be activated via the Ly49D receptor. While NKG2D-dependent cytotoxicity is impaired, prolonged ligand exposure results in constitutive interferon gamma (IFNgamma) production, suggesting sustained signaling. The functional changes are associated with a reduced presence of the relevant signal transducing adaptors DNAX-activating protein of 10 kDa (DAP-10) and killer cell activating receptor-associated protein/DNAX-activating protein of 12 kDa (KARAP/DAP-12). That is likely the consequence of constitutive NKG2D engagement and signaling, since NKG2D function and adaptor expression is restored to normal when the stimulating tumor cells are removed. Thus, the chronic exposure to tumor cells expressing NKG2D ligand alters NKG2D signaling and may facilitate the evasion of tumor cells from NK cell reactions.
Resumo:
A murine monoclonal antibody (SJL 2-4) specific for the antigen apo-cytochrome c was shown to inhibit both antigen-induced proliferation and lymphokine secretion by an apo-cytochrome c-specific BALB/c helper T cell clone. The inhibition was specific because additional apo-cytochrome c-specific T cell clones were not inhibited by the same monoclonal antibody. Time course studies of the inhibition indicated that the initial 8 hr of contact between T cell clones and antigen-presenting cells were critical for activation of the T cell clones. Inhibition of T cell functions by antigen-specific antibodies appeared to correlate with the antibody-antigen binding constant because a second monoclonal antibody (Cyt-1-59), with identical specificity but with a lower affinity constant for apo-cytochrome c, had very little inhibitory effect on the proliferation or lymphokine secretion of apo-cytochrome c-specific T cell clones.
Resumo:
The alpha1b-adrenergic receptor (AR) is a member of the large superfamily of seven transmembrane domain (TMD) G protein-coupled receptors (GPCR). Combining site-directed mutagenesis of the alpha1b-AR with computational simulations of receptor dynamics, we have explored the conformational changes underlying the process of receptor activation, i.e. the transition between the inactive and active states. Our findings suggest that the structural constraint stabilizing the alpha1b-AR in the inactive form is a network of H-bonding interactions amongst conserved residues forming a polar pocket and R143 of the DRY sequence at the end of TMDIII. We have recently reported that point mutations of D142, of the DRY sequence and of A293 in the distal portion of the third intracellular loop resulted in ligand-independent (constitutive) activation of the alpha1b-AR. These constitutively activating mutations could induce perturbations resulting in the shift of R143 out of the polar pocket. The main role of R143 may be to mediate receptor activation by triggering the exposure of several basic amino acids of the intracellular loops towards the G protein. Our investigation has been extended also to the biochemical events involved in the desensitization process of alpha1b-AR. Our results indicate that immediately following agonist-induced activation, the alpha1b-AR can undergo rapid agonist-induced phosphorylation and desensitization. Different members of the G protein coupled receptor kinase family can play a role in agonist-induced regulation of the alpha1b-AR. In addition, constitutively active alpha1b-AR mutants display different phosphorylation and internalization features. The future goal is to further elucidate the molecular mechanism underlying the complex equilibrium between activation and inactivation of the alpha1b-AR and its regulation by pharmacological substances. These findings can help to elucidate the mechanism of action of various agents displaying properties of agonists or inverse agonists at the adrenergic system.
Resumo:
Receptors for interleukin 2 (IL-2) esit in at least three forms which differ in their subunit compositio, their affinity for ligand and their ability to mediate a cellular reponse. Type I receptors occur following cellular acitivation and consist of the 55,000 m. w. glycoprotein Tac. These receptors bind IL-2 with a low affinity, do not internalize ligand and have not been definitively associated with any response. Type II receptors, on the other hand, conssit of one or more glycoproteins of 70,000 m. w. which have been termed "beta ([beta]) chains." They bind IL-2 with an intermediate affinity and rapidly internalize the ligand. [Beta] proteins mediate many cellular IL-2-dependent reponses, including the short-term activation of natural killer cells and the induction of Tac protein expression. Type III receptors consist of a ternary complex of the Tac protein, the [beta] chain(s) and IL-2. They are characterized by a paricularly high affinity for ligand association. Type III receptors also internalize ligand and mediate IL-2-dependent responses at low factor concentrations. The identification of two independent IL-2-binding molecules, Tac and [beta], thus provides the elusive molecular explanation for the differences in IL-2 receptor affinity and suggests the potential for selective therapeutic manipulation of IL-2 reponses.
Resumo:
Connexin-36 (Cx36) is a gap junction protein expressed by the insulin-producing beta-cells. We investigated the contribution of this protein in normal beta-cell function by using a viral gene transfer approach to alter Cx36 content in the insulin-producing line of INS-1E cells and rat pancreatic islets. Transcripts for Cx43, Cx45, and Cx36 were detected by reverse transcriptase-PCR in freshly isolated pancreatic islets, whereas only a transcript for Cx36 was detected in INS-1E cells. After infection with a sense viral vector, which induced de novo Cx36 expression in the Cx-defective HeLa cells we used to control the transgene expression, Western blot, immunofluorescence, and freeze-fracture analysis showed a large increase of Cx36 within INS-1E cell membranes. In contrast, after infection with an antisense vector, Cx36 content was decreased by 80%. Glucose-induced insulin release and insulin content were decreased, whether infected INS-1E cells expressed Cx36 levels that were largely higher or lower than those observed in wild-type control cells. In both cases, basal insulin secretion was unaffected. Comparable observations on basal secretion and insulin content were made in freshly isolated rat pancreatic islets. The data indicate that large changes in Cx36 alter insulin content and, at least in INS-1E cells, also affect glucose-induced insulin release.