997 resultados para latex product waste
Resumo:
Fine powders of minerals are used commonly in the paper and paint industry, and for ceramics. Research for utilizing of different waste materials in these applications is environmentally important. In this work, the ultrafine grinding of two waste gypsum materials, namely FGD (Flue Gas Desulphurisation) gypsum and phosphogypsum from a phosphoric acid plant, with the attrition bead mill and with the jet mill has been studied. The ' objective of this research was to test the suitability of the attrition bead mill and of the jet mill to produce gypsum powders with a particle size of a few microns. The grinding conditions were optimised by studying the influences of different operational grinding parameters on the grinding rate and on the energy consumption of the process in order to achieve a product fineness such as that required in the paper industry with as low energy consumption as possible. Based on experimental results, the most influential parameters in the attrition grinding were found to be the bead size, the stirrer type, and the stirring speed. The best conditions, based on the product fineness and specific energy consumption of grinding, for the attrition grinding process is to grind the material with small grinding beads and a high rotational speed of the stirrer. Also, by using some suitable grinding additive, a finer product is achieved with a lower energy consumption. In jet mill grinding the most influential parameters were the feed rate, the volumetric flow rate of the grinding air, and the height of the internal classification tube. The optimised condition for the jet is to grind with a small feed rate and with a large rate of volumetric flow rate of grinding air when the inside tube is low. The finer product with a larger rate of production was achieved with the attrition bead mill than with the jet mill, thus the attrition grinding is better for the ultrafine grinding of gypsum than the jet grinding. Finally the suitability of the population balance model for simulation of grinding processes has been studied with different S , B , and C functions. A new S function for the modelling of an attrition mill and a new C function for the modelling of a jet mill were developed. The suitability of the selected models with the developed grinding functions was tested by curve fitting the particle size distributions of the grinding products and then comparing the fitted size distributions to the measured particle sizes. According to the simulation results, the models are suitable for the estimation and simulation of the studied grinding processes.
Resumo:
The objective of this master’s thesis is to define Larox´s Product Data present state and future development needs from after sales point of view. In particular the object was to investigate after sales needs, which data related to products need to be managed by using Product Data Management. Empirical material of thesis was collected mainly through interviews, benchmark visits, and personal experience. Among the interviewees were internal stakeholders who are closely related to the product process, as well as external stakeholders. Interviews revealed that each stakeholder group has deviating needs for product data management and that at present all the needs are not met to take the best possible way. The main requirement was availability of up-to-date information, which plays a key role in after sales business. At the end of study is concentrated to find development targets at Larox, especially from after sales point of view. In addition, consideration of how the product data management advantages can utilized in making internal processes more efficient. Development needs are collected together as project descriptions, whose headings are shown at the end of the study.
Resumo:
Organic food products are highly susceptible to fraud. Currently, administrative controls are conducted to detect fraud, but having an analytical tool able to verify the organic identity of food would be very supportive. The state-of-the-art in food authentication relies on fingerprinting approaches that find characteristic analytical patterns to unequivocally identify authentic products. While wide research on authentication has been conducted for other commodities, the authentication of organic chicken products is still in its infancy. Challenges include finding fingerprints to discriminate organic from conventional products, and recruiting sample sets that cover natural variability. Future research might be oriented towards developing new authentication models for organic feed, eggs and chicken meat, keeping models updated and implementing them into regulations. Meanwhile, these models might be very supportive to the administrative controls directing inspections towards suspicious fraudulent samples.
Resumo:
Recommender systems attempt to predict items in which a user might be interested, given some information about the user's and items' profiles. Most existing recommender systems use content-based or collaborative filtering methods or hybrid methods that combine both techniques (see the sidebar for more details). We created Informed Recommender to address the problem of using consumer opinion about products, expressed online in free-form text, to generate product recommendations. Informed recommender uses prioritized consumer product reviews to make recommendations. Using text-mining techniques, it maps each piece of each review comment automatically into an ontology
Resumo:
This paper deals with the product design, engineering, and material selection intended for the manufacturing of an eco-friendly chair. The final product is expected to combine design attributes with technical and legal feasibility with the implementation of new bio-based materials. Considering the industrial design, a range of objectives and trends were determined after setting the market requirements, and the final concept was proposed and modeled. The product geometry, production technology, and legal specifications were the input data for product engineering. The material selection was based on the technical requirements. Polypropylene (PP) composite materials based on coupled-fiberglass, sized-fiberglass, and coupled-stone ground wood reinforcements were prepared and characterized. Final formulations based on these PP composites are proposed and justified
Resumo:
The general striving to bring down the number of municipal landfills and to increase the reuse and recycling of waste-derived materials across the EU supports the debates concerning the feasibility and rationality of waste management systems. Substantial decrease in the volume and mass of landfill-disposed waste flows can be achieved by directing suitable waste fractions to energy recovery. Global fossil energy supplies are becoming more and more valuable and expensive energy sources for the mankind, and efforts to save fossil fuels have been made. Waste-derived fuels offer one potential partial solution to two different problems. First, waste that cannot be feasibly re-used or recycled is utilized in the energy conversion process according to EU’s Waste Hierarchy. Second, fossil fuels can be saved for other purposes than energy, mainly as transport fuels. This thesis presents the principles of assessing the most sustainable system solution for an integrated municipal waste management and energy system. The assessment process includes: · formation of a SISMan (Simple Integrated System Management) model of an integrated system including mass, energy and financial flows, and · formation of a MEFLO (Mass, Energy, Financial, Legislational, Other decisionsupport data) decision matrix according to the selected decision criteria, including essential and optional decision criteria. The methods are described and theoretical examples of the utilization of the methods are presented in the thesis. The assessment process involves the selection of different system alternatives (process alternatives for treatment of different waste fractions) and comparison between the alternatives. The first of the two novelty values of the utilization of the presented methods is the perspective selected for the formation of the SISMan model. Normally waste management and energy systems are operated separately according to the targets and principles set for each system. In the thesis the waste management and energy supply systems are considered as one larger integrated system with one primary target of serving the customers, i.e. citizens, as efficiently as possible in the spirit of sustainable development, including the following requirements: · reasonable overall costs, including waste management costs and energy costs; · minimum environmental burdens caused by the integrated waste management and energy system, taking into account the requirement above; and · social acceptance of the selected waste treatment and energy production methods. The integrated waste management and energy system is described by forming a SISMan model including three different flows of the system: energy, mass and financial flows. By defining the three types of flows for an integrated system, the selected factor results needed in the decision-making process of the selection of waste management treatment processes for different waste fractions can be calculated. The model and its results form a transparent description of the integrated system under discussion. The MEFLO decision matrix has been formed from the results of the SISMan model, combined with additional data, including e.g. environmental restrictions and regional aspects. System alternatives which do not meet the requirements set by legislation can be deleted from the comparisons before any closer numerical considerations. The second novelty value of this thesis is the three-level ranking method for combining the factor results of the MEFLO decision matrix. As a result of the MEFLO decision matrix, a transparent ranking of different system alternatives, including selection of treatment processes for different waste fractions, is achieved. SISMan and MEFLO are methods meant to be utilized in municipal decision-making processes concerning waste management and energy supply as simple, transparent and easyto- understand tools. The methods can be utilized in the assessment of existing systems, and particularly in the planning processes of future regional integrated systems. The principles of SISMan and MEFLO can be utilized also in other environments, where synergies of integrating two (or more) systems can be obtained. The SISMan flow model and the MEFLO decision matrix can be formed with or without any applicable commercial or free-of-charge tool/software. SISMan and MEFLO are not bound to any libraries or data-bases including process information, such as different emission data libraries utilized in life cycle assessments.
Resumo:
The Municipal Station of Americana, SP, Brazil, treats a volume of 400 l s-1 of effluent, of domestic and textile origin, and produces about 20 t of sludge per day. The plant horseradish, which contains high amount of peroxidases, was able to decolorize this effluent in 2 h and the solid waste in 2 days, at concentrations of 10 and 50%, respectively. However, there was an increase in the toxicity for the bioassays with Hydra attenuatta, Selenastrum capricornutum and lettuce seeds, indicating formation of more toxic substances. Since horseradish showed the ability to decolorize these residues, it can be used as pre-treatment resulting in a sludge of less complex composition.
Resumo:
Cost estimation is an important, but challenging process when designing a new product or a feature of it, verifying the product prices given by suppliers or planning a cost saving actions of existing products. It is even more challenging when the product is highly modular, not a bulk product. In general, cost estimation techniques can be divided into two main groups - qualitative and quantitative techniques - which can further be classified into more detailed methods. Generally, qualitative techniques are preferable when comparing alternatives and quantitative techniques when cost relationships can be found. The main objective of this thesis was to develop a method on how to estimate costs of internally manufactured and commercial elevator landing doors. Because of the challenging product structure, the proposed cost estimation framework is developed under three different levels based on past cost information available. The framework consists of features from both qualitative and quantitative cost estimation techniques. The starting point for the whole cost estimation process is an unambiguous, hierarchical product structure so that the product can be classified into controllable parts and is then easier to handle. Those controllable parts can then be compared to existing past cost knowledge of similar parts and create as accurate cost estimates as possible by that way.
Resumo:
The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.
Resumo:
The aim of this thesis was to analyze the background information of an activity-based costing system, which is being used in a domestic forest industry company. The reports produced by the system have not been reliable, and this has caused the utilization of the system to diminish. The study was initiated by examining the theory of activity-based costing. It was also discovered, that the system produces management accounting information and therefore also that theory was introduced briefly. Next the possible sources of errors were examined. The significance of these errors was evaluated and waste handling was chosen as a subject of further study. The problem regarding waste handling was that there is no waste compensation in current model. When paper or board machine produces waste, it can be used as raw material in the process. However, at the moment the product, which is being produced, at the time does not get any compensation. The use of compensation has not been possible due to not knowing the quantity of process waste. As a result of the study a calculatory model, which enables calculating the quantity of process waste based on the data from the mill system, was introduced. This, for one, enables starting to use waste compensation in the future.
Resumo:
This study investigated the treatment of a liquid radioactive waste containing uranium (235U + 238U) using nanofiltration membranes. The membranes were immersed in the waste for 24-5000 h, and their transport properties were evaluated before and after the immersion. Surface of the membranes changed after immersion in the waste. The SW5000 h specimen lost its coating layer of polyvinyl alcohol, and its rejection of sulfate ions and uranium decreased by about 35% and 30%, respectively. After immersion in the waste, the polyamide selective layer of the membranes became less thermally stable than that before immersion.
Resumo:
The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET) and polyvinylpyrrolidone (PVP) is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG) of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP), molecular weight cut-off (MWCO), and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.
Resumo:
Agroindustrial waste in general presents significant levels of nutrients and organic matter and has therefore been frequently put to agricultural use. In this context, the objective of this study was to determine the chemical composition, nitrogen, phosphorus, potassium, calcium, magnesium and carbon content, as well as the qualitative characteristics through Fourier transform infrared spectroscopy of four samples of poultry litter and one sample of cattle manure, from the southwestern region of Paraná, Brazil. Results revealed that, in general, the poultry litter presented higher amount of nutrients and carbon than the cattle manure. The infrared spectra allowed identification of the functional groups present and the differences in degree of sample humification. The statistical treatment confirmed the quantitative and qualitative differences revealed.
Resumo:
The environmental impact of plastic waste has attracted worldwide attention. Amid the current context of increasing concern for the environment, biodegradable plastics have been widely studied as a replacement for synthetic plastics. Poly(3-hydroxybutyrate) (P(3HB)) is a biopolymer stored as an intracellular energy and reserve source in many microorganisms. Because it is an intracellular product, P(3HB) must be extracted from the cells at the end of the culture. The purpose of this study was to investigate the effect of extraction time, heating temperature, first standing time (after filtration and extraction), second standing time (after P(3HB) precipitation) and solvent amount, during the process of extracting P(3HB) from Cupriavidus necator DSM 545, using propylene carbonate as solvent. The extraction kinetic of P(3HB) with propylene carbonate from thermally treated biomass was evaluated at different temperatures. The physical properties of the P(3HB) obtained were also evaluated. In this case, P(3HB) obtained at optimal conditions of recovery (98%) and purity (99%) was used. Results showed that temperature was the most important factor in these responses for the range of values studied (110-150 ºC).