992 resultados para genetic benefits
Resumo:
Autoimmune diseases are more common in dogs than in humans and are already threatening the future of some highly predisposed dog breeds. Susceptibility to autoimmune diseases is controlled by environmental and genetic factors, especially the major histocompatibility complex (MHC) gene region. Dogs show a similar physiology, disease presentation and clinical response as humans, making them an excellent disease model for autoimmune diseases common to both species. The genetic background of canine autoimmune disorders is largely unknown, but recent annotation of the dog genome and subsequent development of new genomic tools offer a unique opportunity to map novel autoimmune genes in various breeds. Many autoimmune disorders show breed-specific enrichment, supporting a strong genetic background. Furthermore, the presence of hundreds of breeds as genetic isolates facilitates gene mapping in complex autoimmune disorders. Identification of novel predisposing genes establishes breeds as models and may reveal novel candidate genes for the corresponding human disorders. Genetic studies will eventually shed light on common biological functions and interactions between genes and the environment. This study aimed to identify genetic risk factors in various autoimmune disorders, including systemic lupus erythematosus (SLE)-related diseases, comprising immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis arteritis (SMRA) as well as Addison s disease (AD) in Nova Scotia Duck Tolling Retrievers (NSDTRs) and chronic superficial keratitis (CSK) in German Shepherd dogs (GSDs). We used two different approaches to identify genetic risk factors. Firstly, a candidate gene approach was applied to test the potential association of MHC class II, also known as a dog leukocyte antigen (DLA) in canine species. Secondly, a genome-wide association study (GWAS) was performed to identify novel risk loci for SLE-related disease and AD in NSDTRs. We identified DLA risk haplotypes for an IMRD subphenotype of SLE-related disease, AD and CSK, but not in SMRA, and show that the MHC class II gene region is a major genetic risk factor in canine autoimmune diseases. An elevated risk was found for IMRD in dogs that carried the DLA-DRB1*00601/DQA1*005011/DQB1*02001 haplotype (OR = 2.0, 99% CI = 1.03-3.95, p = 0.01) and for ANA-positive IMRD dogs (OR = 2.3, 99% CI = 1.07-5.04, p-value 0.007). We also found that DLA-DRB1*01502/DQA*00601/DQB1*02301 haplotype was significantly associated with AD in NSDTRs (OR = 2.1, CI = 1.0-4.4, P = 0.044) and the DLA-DRB1*01501/DQA1*00601/DQB1*00301 haplotype with the CSK in GSDs (OR=2.67, CI=1.17-6.44, p= 0.02). In addition, we found that homozygosity for the risk haplotype increases the risk for each disease phenotype and that an overall homozygosity for the DLA region predisposes to CSK and AD. Our results have enabled the development of genetic tests to improve breeding practices by avoiding the production of puppies homozygous for risk haplotypes. We also performed the first successful GWAS for a complex disease in dogs. With less than 100 cases and 100 controls, we identified five risk loci for SLE-related disease and AD and found strong candidate genes involved in a novel T-cell activation pathway. We show that an inbred dog population has fewer risk factors, but each of them has a stronger genetic risk. Ongoing studies aim to identify the causative mutations and bring new knowledge to help diagnostics, treatment and understanding of the aetiology of SLE-related diseases.
Resumo:
"The Protection of Traditional Knowledge Associated with Genetic Resources: The Role of Databases and Registers" ABSTRACT Yovana Reyes Tagle The misappropriation of TK has sparked a search for national and international laws to govern the use of indigenous peoples knowledge and protection against its commercial exploitation. There is a widespread perception that biopiracy or illegal access to genetic resources and associated traditional knowledge (TK) continues despite national and regional efforts to address this concern. The purpose of this research is to address the question of how documentation of TK through databases and registers could protect TK, in light of indigenous peoples increasing demands to control their knowledge and benefit from its use. Throughout the international debate over the protection of TK, various options have been brought up and discussed. At its core, the discussion over the legal protection of TK comes down to these issues: 1) The doctrinal question: What is protection of TK? 2) The methodological question: How can protection of TK be achieved? 3) The legal question: What should be protected? And 4) The policy questions: Who has rights and how should they be implemented? What kind of rights should indigenous peoples have over their TK? What are the central concerns the TK databases want to solve? The acceptance of TK databases and registers may bring with it both opportunities and dangers. How can the rights of indigenous peoples over their documented knowledge be assured? Documentation of TK was envisaged as a means to protect TK, but there are concerns about how documented TK can be protected from misappropriation. The methodology used in this research seeks to contribute to the understanding of the protection of TK. The steps taken in this research attempt to describe and to explain a) what has been done to protect TK through databases and registers, b) how this protection is taking place, and c) why the establishment of TK databases can or cannot be useful for the protection of TK. The selected case studies (Peru and Venezuela) seek to illustrate the complexity and multidisciplinary nature of the establishment of TK databases, which entail not only legal but also political, socio-economic and cultural issues. The study offers some conclusions and recommendations that have emerged after reviewing the national experiences, international instruments, work of international organizations, and indigenous peoples perspectives. This thesis concludes that if TK is to be protected from disclosure and unauthorized use, confidential databases are required. Finally, the TK database strategy needs to be strengthened by the legal protection of the TK itself.
Resumo:
"In this study, for the first time, two distinct genetic lineages of Puumala virus (PUUV) were found within a small sampling area and within a single host genetic lineage (Ural mtDNA) at Pallasjarvi, northern Finland. Lung tissue samples of 171 bank voles (Myodes glareolus) trapped in September 1998 were screened for the presence of PUUV nucleocapsid antigen and 25 were found to be positive. Partial sequences of the PUUV small (S), medium (M) and large (L) genome segments were recovered from these samples using RT-PCR. Phylogenetic analysis revealed two genetic groups of PUUV sequences that belonged to the Finnish and north Scandinavian lineages. This presented a unique opportunity to study inter-lineage reassortment in PUUV; indeed, 32% of the studied bank voles appeared to carry reassortant virus genomes. Thus, the frequency of inter-lineage reassortment in PUUV was comparable to that of intra-lineage reassortment observed previously (Razzauti, M., Plyusnina, A., Henttonen, H. & Plyusnin, A. (2008). J Gen Virol 89, 1649-1660). Of six possible reassortant S/M/L combinations, only two were found at Pallasjarvi and, notably, in all reassortants, both S and L segments originated from the same genetic lineage, suggesting a non-random pattern for the reassortment. These findings are discussed in connection to PUUV evolution in Fermoscandia."
Resumo:
In humans, well-replicated and robust sex differences in cognitive functions exist for handedness and mental rotation ability. A common characteristic in human cognitive functions is the lateralization of language functions. Handedness is a common measure of laterality and is related to language lateralization. The prevalence of left-handedness is higher in males than in females, the male to female ratio being about 1.2. Among cognitive abilities, the largest sex difference is evident in the Vandenberg and Kuse Mental Rotation Test (MRT), which requires the ability to rotate objects in mental space. On average, males achieve scores one standard deviation higher than females in the MRT. The present thesis investigated the origins of the sex differences in laterality and spatial ability as represented by handedness and mental rotation ability, respectively. Two population-based Finnish twin cohorts were utilized in this study. Handedness was studied in 25 810 twins and 4068 singletons born before 1958 from the Older Finnish Twin Cohort, and in 4736 twins born in 1983-87 from the FinnTwin12. MRT was studied in a sub-sample of 804 young adult participants from the FinnTwin12 sample. The main findings of this study were: 1) the prevalence of left-handedness was higher among males than among females in both singletons and in twins; 2) males had significantly higher scores than females in MRT; 3) about one quarter of the variance in handedness and about half of the variance in MRT was explained by genetic effects, whereas the remainder of the variance in these traits was explained by environmental effects unique to each individual. The magnitude of the genetic effects was similar in both sexes; 4) left-handedness was significantly less common in female co-twins of a male than in female co-twins of a female, and female co-twins of a male scored significantly higher than did female co-twins of a female in the Mental Rotation Test. This dissertation discusses whether these differences between females from opposite- and same-sex twin pairs are due to the prenatal transfer of testosterone from the male fetus in females with male co-twins or whether they arise from postnatal socialization effects.
Resumo:
Bone mass accrual and maintenance are regulated by a complex interplay between genetic and environmental factors. Recent studies have revealed an important role for the low-density lipoprotein receptor-related protein 5 (LRP5) in this process. The aim of this thesis study was to identify novel variants in the LRP5 gene and to further elucidate the association of LRP5 and its variants with various bone health related clinical characteristics. The results of our studies show that loss-of-function mutations in LRP5 cause severe osteoporosis not only in homozygous subjects but also in the carriers of these mutations, who have significantly reduced bone mineral density (BMD) and increased susceptibility to fractures. In addition, we demonstrated for the first time that a common polymorphic LRP5 variant (p.A1330V) was associated with reduced peak bone mass, an important determinant of BMD and osteoporosis in later life. The results from these two studies are concordant with results seen in other studies on LRP5 mutations and in association studies linking genetic variation in LRP5 with BMD and osteoporosis. Several rare LRP5 variants were identified in children with recurrent fractures. Sequencing and multiplex ligation-dependent probe amplification (MLPA) analyses revealed no disease-causing mutations or whole-exon deletions. Our findings from clinical assessments and family-based genotype-phenotype studies suggested that the rare LRP5 variants identified are not the definite cause of fractures in these children. Clinical assessments of our study subjects with LPR5 mutations revealed an unexpectedly high prevalence of impaired glucose tolerance and dyslipidaemia. Moreover, in subsequent studies we discovered that common polymorphic LRP5 variants are associated with unfavorable metabolic characteristics. Changes in lipid profile were already apparent in pre-pubertal children. These results, together with the findings from other studies, suggest an important role for LRP5 also in glucose and lipid metabolism. Our results underscore the important role of LRP5 not only in bone mass accrual and maintenance of skeletal health but also in glucose and lipid metabolism. The role of LRP5 in bone metabolism has long been studied, but further studies with larger study cohorts are still needed to evaluate the specific role of LRP5 variants as metabolic risk factors.
Resumo:
The 3A region of foot-and-mouth disease virus has been implicated in host range and virulence. For example, amino acid deletions in the porcinophilic strain (O/TAW/97) at 93-102 aa of the 153 codons long 3A protein have been recognized as the determinant of species specificity. In the present study, 18 type 0 FMDV isolates from India were adapted in different cell culture systems and the 3A sequence was analyzed. These isolates had complete 3A coding sequence (153 aa) and did not exhibit growth restriction in cells based on species of origin. The 3A region was found to be highly conserved at N-terminal half (1-75 aa) but exhibited variability or substitutions towards C-terminal region (80-153). Moreover the amino acid substitutions were more frequent in recent Indian buffalo isolates but none of the Indian isolates showed deletion in 3A protein, which may be the reason for the absence of host specificity in vitro. Further inclusive analysis of 3A region will reveal interesting facts about the variability of FMD virus 3A region in an endemic environment. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
“Corporate governance deals with the ways in which suppliers of finance to firms assure themselves of getting a return on their investment” (Shleifer and Vishny (1997, p. 737). According to La Porta et al. (1999), research in corporate finance relevant for most countries should focus on the incentives and capabilities of controlling shareholders to treat themselves preferentially at the expense of minority shareholders. Accordingly, this thesis sets out to answer a number of research questions regarding the role of large shareholders in public firms that have received little attention in the literature so far. A common theme in the essays stems from the costs and benefits of individual large-block owners and the role of control contestability from the perspective of outside minority shareholders. The first essay empirically examines whether there are systematic performance differences between family controlled and nonfamily controlled firms in Western Europe. In contrast to the widely held view that family control penalizes firm value, the essay shows that publicly traded family firms have higher performance than comparable firms. In the second essay, we present both theoretical and empirical analysis on the effects of control contestability on firm valuation. Consistent with the theoretical model, the empirical results show that minority shareholders benefit from a more contestable control structure. The third essay explores the effects of individual large-block owners on top management turnover and board appointments in Finnish listed firms. The results indicate that firm performance is an important determinant for management and board restructurings. For certain types of turnover decisions the corporate governance structure influences the performance / turnover sensitivity. In the fourth essay, we investigate the relation between the governance structure and dividend policy in Finnish listed firms. We find evidence in support of the outcome agency model of dividends stating that lower agency conflicts should be associated with higher dividend payouts.
Resumo:
Several researchers are of the opinion that there are many benefits in using the object-oriented paradigm in information systems development. If the object-oriented paradigm is used, the development of information systems may, for example, be faster and more efficient. On the other hand, there are also several problems with the paradigm. For example, it is often considered complex, it is often difficult to make use of the reuse concept and it is still immature in some areas. Although there are several interesting features in the object-oriented paradigm, there is still little comprehensive knowledge of the benefits and problems associated with it. The objective of the following study was to investigate and to gain more understanding of the benefits and problems of the object-oriented paradigm. A review of previous studies was made and twelve benefits and twelve problems were established. These benefits and problems were then analysed, studied and discussed. Further a survey and some case studies were made in order to get some knowledge on what benefits and problems with the object-oriented paradigm Finnish software companies had experienced. One hundred and four companies answered the survey that was sent to all Finnish software companies with five or more employees. The case studies were made with six large Finnish software companies. The major finding was that Finnish software companies were exceptionally positive towards the object-oriented information systems development and had experienced very few of the proposed problems. Finally two models for further research were developed. The first model presents connections between benefits and the second between problems.
Resumo:
The problem of assigning customers to satellite channels is considered. Finding an optimal allocation of customers to satellite channels is a difficult combinatorial optimization problem and is shown to be NP-complete in an earlier study. We propose a genetic algorithm (GA) approach to search for the best/optimal assignment of customers to satellite channels. Various issues related to genetic algorithms such as solution representation, selection methods, genetic operators and repair of invalid solutions are presented. A comparison of this approach with the standard optimization method is presented to show the advantages of this approach in terms of computation time
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.
Resumo:
This study addresses the issues of spatial distribution, dispersal, and genetic heterogeneity in social groups of the cellular slime molds (CSMs). The CSMs are soil amoebae with an unusual life cycle that consists of alternating solitary and social phases. Because the social phase involves division of labor with what appears to be an extreme form of "altruism", the CSMs raise interesting evolutionary questions regarding the origin and maintenance of sociality. Knowledge of the genetic structure of social groups in the wild is necessary for answering these questions. We confirm that CSMs are widespread in undisturbed forest soil from South India. They are dispersed over long distances via the dung of a variety of large mammals. Consistent with this mode of dispersal, most social groups in the two species examined for detailed study, Dictyostelium giganteum and Dictyostelium purpureum, are multi-clonal.
Resumo:
Alcohol and other substance use disorders (SUDs) result in great costs and suffering for individuals and families and constitute a notable public health burden. A multitude of factors, ranging from biological to societal, are associated with elevated risk of SUDs, but at the level of individuals, one of the best predictors is a family history of SUDs. Genetically informative twin and family studies have consistently indicated this familial risk to be mainly genetic. In addition, behavioral and temperamental factors such as early initiation of substance use and aggressiveness are associated with the development of SUDs. These familial, behavioral and temperamental risk factors often co-occur, but their relative importance is not well known. People with SUDs have also been found to differ from healthy controls in various domains of cognitive functioning, with poorer verbal ability being among the most consistent findings. However, representative population-based samples have rarely been used in neuropsychological studies of SUDs. In addition, both SUDs and cognitive abilities are influenced by genetic factors, but whether the co-variation of these traits might be partly explained by overlapping genetic influences has not been studied. Problematic substance use also often co-occurs with low educational level, but it is not known whether these outcomes share part of their underlying genetic influences. In addition, educational level may moderate the genetic etiology of alcohol problems, but gene-environment interactions between these phenomena have also not been widely studied. The incidence of SUDs peaks in young adulthood rendering epidemiological studies in this age group informative. This thesis investigated cognitive functioning and other correlates of SUDs in young adulthood in two representative population-based samples of young Finnish adults, one of which consisted of monozygotic and dizygotic twin pairs enabling genetically informative analyses. Using data from the population-based Mental Health in Early Adulthood in Finland (MEAF) study (n=605), the lifetime prevalence of DSM-IV any substance dependence or abuse among persons aged 21—35 years was found to be approximately 14%, with a majority of the diagnoses being alcohol use disorders. Several correlates representing the domains of behavioral and affective factors, parental factors, early initiation of substance use, and educational factors were individually associated with SUDs. The associations between behavioral and affective factors (attention or behavior problems at school, aggression, anxiousness) and SUDs were found to be largely independent of factors from other domains, whereas daily smoking and low education were still associated with SUDs after adjustment for behavioral and affective factors. Using a wide array of neuropsychological tests in the MEAF sample and in a subsample (n=602) of the population-based FinnTwin16 (FT16) study, consistent evidence of poorer verbal cognitive ability related to SUDs was found. In addition, participants with SUDs performed worse than those without disorders in a task assessing psychomotor processing speed in the MEAF sample, whereas no evidence of more specific cognitive deficits was found in either sample. Biometrical structural equation models of the twin data suggested that both alcohol problems and verbal ability had moderate heritabilities (0.54—0.72), and that their covariation could be explained by correlated genetic influences (genetic correlations -0.20 to -0.31). The relationship between educational level and alcohol problems, studied in the full epidemiological FT16 sample (n=4,858), was found to reflect both genetic correlation and gene-environment interaction. The co-occurrence of low education and alcohol problems was influenced by overlapping genetic factors. In addition, higher educational level was associated with increased relative importance of genetic influences on alcohol problems, whereas environmental influences played a more important role in young adults with lower education. In conclusion, SUDs, especially alcohol abuse and dependence, are common among young Finnish adults. Behavioral and affective factors are robustly related to SUDs independently of many other factors, and compared to healthy peers, young adults who have had SUDs during their life exhibit significantly poorer verbal cognitive ability, and possibly less efficient psychomotor processing. Genetic differences between individuals explain a notable proportion of individual differences in risk of alcohol dependence, verbal ability, and educational level, and the co-occurrence of alcohol problems with poorer verbal cognition and low education is influenced by shared genetic backgrounds. Finally, various environmental factors related to educational level in young adulthood moderate the relative importance of genetic factors influencing the risk of alcohol problems, possibly reflecting differences in social control mechanisms related to educational level.
Resumo:
The upstream proinflammatory interleukin-1 (IL-1) cytokines, together with a naturally occurring IL-1 receptor antagonist (IL-1Ra), play a significant role in several diseases and physiologic conditions. The IL-1 proteins affect glucose homeostasis at multiple levels contributing to vascular injuries and metabolic dysregulations that precede diabetes. An association between IL-1 gene variations and IL-1Ra levels has been suggested, and genetic studies have reported associations with metabolic dysregulation and altered inflammatory responses. The principal aims of this study were to: 1) examine the associations of IL-1 gene variation and IL-1Ra expression in the development and persistence of thyroid antibodies in subacute thyroiditis; 2) investigate the associations of common variants in the IL-1 gene family with plasma glucose and insulin concentrations, glucose homeostasis measures and prevalent diabetes in a representative population sample; 3) investigate genetic and non-genetic determinants of IL-1Ra phenotypes in a cross-sectional setting in three independent study populations; 4) investigate in a prospective setting (a) whether variants of the IL-1 gene family are predictors for clinically incident diabetes in two population-based observational cohort studies; and (b) whether the IL-1Ra levels predict the progression of metabolic syndrome to overt diabetes during the median follow-up of 10.8 and 7.1 years. Results from on patients with subacte thyroiditis showed that the systemic IL-1Ra levels are elevated during a specific proinflammatory response and they correlated with C-reactive protein (CRP) levels. Genetic variation in the IL-1 family seemed to have an association with the appearance of thyroid peroxidase antibodies and persisting local autoimmune responses during the follow-up. Analysis of patients suffering from diabetes and metabolic traits suggested that genetic IL-1 variation and IL-1Ra play a role in glucose homeostasis and in the development of type 2 diabetes. The coding IL-1 beta SNP rs1143634 was associated with traits related to insulin resistance in cross-sectional analyses. Two haplotype variants of the IL-1 beta gene were associated with prevalent diabetes or incident diabetes in a prospective setting and both of these haplotypes were tagged by rs1143634. Three variants of the IL-1Ra gene and one of the IL-1 beta gene were consistently identified as significant, independent determinants of the IL-1Ra phenotype in two or three populations. The proportion of the phenotypic variation explained by the genetic factors was modest however, while obesity and other metabolic traits explained a larger part. Body mass index was the strongest predictor of systemic IL-1Ra concentration overall. Furthermore, the age-adjusted IL-1Ra concentrations were elevated in individuals with metabolic syndrome or diabetes when compared to those free of metabolic dysregulation. In prospective analyses the systemic IL-1Ra levels were found as independent predictors for the development of diabetes in people with metabolic syndrome even after adjustment for multiple other factors, including plasma glucose and CRP levels. The predictive power of IL-1Ra was better than that of CRP. The prospective results also provided some evidence for a role of common IL-1 alpha promoter SNP rs1800587 in the development of type 2 diabetes among men and suggested that the role may be gender specific. Likewise, common variations in the IL-1 beta coding region may have a gender specific association with diabetes development. Further research on the potential benefits of IL-1Ra measurements in identifying individuals at high risk for diabetes, who then could be targeted for specific treatment interventions, is warranted. It has been reported in the recent literature that IL-1Ra secreted from adipose tissue has beneficial effects on glucose homeostasis. Furthermore, treatment with recombinant human IL-1Ra has been shown to have a substantial therapeutic potential. The genetic results from the prospective analyses performed in this study remain inconclusive, but together with the cross-sectional analyses they suggest gender-specific effects of the IL-1 variants on the risk of diabetes. Larger studies with more extensive genotyping and resequencing may help to pinpoint the exact variants responsible and to further elucidate the biological mechanisms for the observed associations. This would improve our understanding of the pathways linking inflammation and obesity with glucose and insulin metabolism.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.
Resumo:
Cognitive health is of central importance for independent and balanced old age, while memory disorders represent the leading cause of intensive and long-term care among the Finnish elderly. The aims of this study were to analyse the effect of height, body mass index, weight change, metabolic conditions and coffee drinking in midlife on cognitive performance in old age among a sample of 2606 Finnish twins aged 65 years or older who had participated in a telephone interview to assess their cognitive status. Since coffee drinking associates with several metabolic conditions and Finns are known to be the greatest consumers of coffee in the world, the heritability and stability of coffee drinking was analysed in the whole Older Finnish Twin Cohort (n=10716). In order to investigate the association between height and cognitive performance in a population with more supportive childhood living conditions, a total of 2161 Danish twins were included in this study. A greater height was found to clearly associate with better cognitive performance in Finnish subjects, but less so among the Danish sample, which may reflect the childhood environmental differences between these cohorts. In the Finnish subjects, there was greater variance in cognitive performance among shorter subjects, and environmental factors were found to play a greater role in their cognitive performance, whereas the cognitive performance of taller participants was mainly explained by genetic factors. Midlife metabolic variables that were found to be significantly associated with a poorer cognitive performance in old age included a higher body mass index and three metabolic conditions: cardiovascular disease, hypertension and, most significantly of all, diabetes. Moreover, both weight gain and loss, even to a lesser degree than suggested previously, were found to be associated with poorer cognition. Furthermore, evidence of a causal relationship between midlife cardiovascular disease and cognitive performance in old age was demonstrated among discordant twin pairs. Conversely, no effect of coffee drinking in midlife on cognitive performance in old age was observed, although coffee drinking was demonstrated to be stable in the study population. The heritability of coffee drinking was found to differ across sexes and age groups, being 51% in men and 52% in women in the whole study population. This study supports the contention that cognitive performance in old age reflects the effects of multiple genetic and environmental exposures, including their complex interactions during the life-span. The demonstrated associations and evidence of a causal pathway between potentially preventable exposures and poorer cognitive performance highlight the importance of preventive medicine.