823 resultados para convolutional neural network
Resumo:
In this study, water uptake by poultry carcasses during cooling by water immersion was modeled using artificial neural networks. Data from twenty-five independent variables and the final mass of the carcass were collected in an industrial plant to train and validate the model. Different network structures with one hidden layer were tested, and the Downhill Simplex method was used to optimize the synaptic weights. In order to accelerate the optimization calculus, Principal Component Analysis (PCA) was used to preprocess the input data. The obtained results were: i) PCA reduced the number of input variables from twenty-five to ten; ii) the neural network structure 4-6-1 was the one with the best result; iii) PCA gave the following order of importance: parameters of mass transfer, heat transfer, and initial characteristics of the carcass. The main contributions of this work were to provide an accurate model for predicting the final content of water in the carcasses and a better understanding of the variables involved.
Resumo:
The construction of offshore structures, equipment and devices requires a high level of mechanical reliability in terms of strength, toughness and ductility. One major site for mechanical failure, the weld joint region, needs particularly careful examination, and weld joint quality has become a major focus of research in recent times. Underwater welding carried out offshore faces specific challenges affecting the mechanical reliability of constructions completed underwater. The focus of this thesis is on improvement of weld quality of underwater welding using control theory. This research work identifies ways of optimizing the welding process parameters of flux cored arc welding (FCAW) during underwater welding so as to achieve desired weld bead geometry when welding in a water environment. The weld bead geometry has no known linear relationship with the welding process parameters, which makes it difficult to determine a satisfactory weld quality. However, good weld bead geometry is achievable by controlling the welding process parameters. The doctoral dissertation comprises two sections. The first part introduces the topic of the research, discusses the mechanisms of underwater welding and examines the effect of the water environment on the weld quality of wet welding. The second part comprises four research papers examining different aspects of underwater wet welding and its control and optimization. Issues considered include the effects of welding process parameters on weld bead geometry, optimization of FCAW process parameters, and design of a control system for the purpose of achieving a desired bead geometry that can ensure a high level of mechanical reliability in welded joints of offshore structures. Artificial neural network systems and a fuzzy logic controller, which are incorporated in the control system design, and a hybrid of fuzzy and PID controllers are the major control dynamics used. This study contributes to knowledge of possible solutions for achieving similar high weld quality in underwater wet welding as found with welding in air. The study shows that carefully selected steels with very low carbon equivalent and proper control of the welding process parameters are essential in achieving good weld quality. The study provides a platform for further research in underwater welding. It promotes increased awareness of the need to improve the quality of underwater welding for offshore industries and thus minimize the risk of structural defects resulting from poor weld quality.
Resumo:
Middle ear infections (acute otitis media, AOM) are among the most common infectious diseases in childhood, their incidence being greatest at the age of 6–12 months. Approximately 10–30% of children undergo repetitive periods of AOM, referred to as recurrent acute otitis media (RAOM). Middle ear fluid during an AOM episode causes, on average, 20–30 dB of hearing loss lasting from a few days to as much as a couple of months. It is well known that even a mild permanent hearing loss has an effect on language development but so far there is no consensus regarding the consequences of RAOM on childhood language acquisition. The results of studies on middle ear infections and language development have been partly discrepant and the exact effects of RAOM on the developing central auditory nervous system are as yet unknown. This thesis aims to examine central auditory processing and speech production among 2-year-old children with RAOM. Event-related potentials (ERPs) extracted from electroencephalography can be used to objectively investigate the functioning of the central auditory nervous system. For the first time this thesis has utilized auditory ERPs to study sound encoding and preattentive auditory discrimination of speech stimuli, and neural mechanisms of involuntary auditory attention in children with RAOM. Furthermore, the level of phonological development was studied by investigating the number and the quality of consonants produced by these children. Acquisition of consonant phonemes, which are harder to hear than vowels, is a good indicator of the ability to form accurate memory representations of ambient language and has not been studied previously in Finnish-speaking children with RAOM. The results showed that the cortical sound encoding was intact but the preattentive auditory discrimination of multiple speech sound features was atypical in those children with RAOM. Furthermore, their neural mechanisms of auditory attention differed from those of their peers, thus indicating that children with RAOM are atypically sensitive to novel but meaningless sounds. The children with RAOM also produced fewer consonants than their controls. Noticeably, they had a delay in the acquisition of word-medial consonants and the Finnish phoneme /s/, which is acoustically challenging to perceive compared to the other Finnish phonemes. The findings indicate the immaturity of central auditory processing in the children with RAOM, and this might also emerge in speech production. This thesis also showed that the effects of RAOM on central auditory processing are long-lasting because the children had healthy ears at the time of the study. An effective neural network for speech sound processing is a basic requisite of language acquisition, and RAOM in early childhood should be considered as a risk factor for language development.
Resumo:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.
Resumo:
Les avancés dans le domaine de l’intelligence artificielle, permettent à des systèmes informatiques de résoudre des tâches de plus en plus complexes liées par exemple à la vision, à la compréhension de signaux sonores ou au traitement de la langue. Parmi les modèles existants, on retrouve les Réseaux de Neurones Artificiels (RNA), dont la popularité a fait un grand bond en avant avec la découverte de Hinton et al. [22], soit l’utilisation de Machines de Boltzmann Restreintes (RBM) pour un pré-entraînement non-supervisé couche après couche, facilitant grandement l’entraînement supervisé du réseau à plusieurs couches cachées (DBN), entraînement qui s’avérait jusqu’alors très difficile à réussir. Depuis cette découverte, des chercheurs ont étudié l’efficacité de nouvelles stratégies de pré-entraînement, telles que l’empilement d’auto-encodeurs traditionnels(SAE) [5, 38], et l’empilement d’auto-encodeur débruiteur (SDAE) [44]. C’est dans ce contexte qu’a débuté la présente étude. Après un bref passage en revue des notions de base du domaine de l’apprentissage machine et des méthodes de pré-entraînement employées jusqu’à présent avec les modules RBM, AE et DAE, nous avons approfondi notre compréhension du pré-entraînement de type SDAE, exploré ses différentes propriétés et étudié des variantes de SDAE comme stratégie d’initialisation d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumière l’influence du niveau de bruit, du nombre de couches et du nombre d’unités cachées sur l’erreur de généralisation du SDAE. Nous avons constaté une amélioration de la performance sur la tâche supervisée avec l’utilisation des bruits poivre et sel (PS) et gaussien (GS), bruits s’avérant mieux justifiés que celui utilisé jusqu’à présent, soit le masque à zéro (MN). De plus, nous avons démontré que la performance profitait d’une emphase imposée sur la reconstruction des données corrompues durant l’entraînement des différents DAE. Nos travaux ont aussi permis de révéler que le DAE était en mesure d’apprendre, sur des images naturelles, des filtres semblables à ceux retrouvés dans les cellules V1 du cortex visuel, soit des filtres détecteurs de bordures. Nous aurons par ailleurs pu montrer que les représentations apprises du SDAE, composées des caractéristiques ainsi extraites, s’avéraient fort utiles à l’apprentissage d’une machine à vecteurs de support (SVM) linéaire ou à noyau gaussien, améliorant grandement sa performance de généralisation. Aussi, nous aurons observé que similairement au DBN, et contrairement au SAE, le SDAE possédait une bonne capacité en tant que modèle générateur. Nous avons également ouvert la porte à de nouvelles stratégies de pré-entraînement et découvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs (SRAE).
Resumo:
Tout au long de la vie, le cerveau développe des représentations de son environnement permettant à l’individu d’en tirer meilleur profit. Comment ces représentations se développent-elles pendant la quête de récompenses demeure un mystère. Il est raisonnable de penser que le cortex est le siège de ces représentations et que les ganglions de la base jouent un rôle important dans la maximisation des récompenses. En particulier, les neurones dopaminergiques semblent coder un signal d’erreur de prédiction de récompense. Cette thèse étudie le problème en construisant, à l’aide de l’apprentissage machine, un modèle informatique intégrant de nombreuses évidences neurologiques. Après une introduction au cadre mathématique et à quelques algorithmes de l’apprentissage machine, un survol de l’apprentissage en psychologie et en neuroscience et une revue des modèles de l’apprentissage dans les ganglions de la base, la thèse comporte trois articles. Le premier montre qu’il est possible d’apprendre à maximiser ses récompenses tout en développant de meilleures représentations des entrées. Le second article porte sur l'important problème toujours non résolu de la représentation du temps. Il démontre qu’une représentation du temps peut être acquise automatiquement dans un réseau de neurones artificiels faisant office de mémoire de travail. La représentation développée par le modèle ressemble beaucoup à l’activité de neurones corticaux dans des tâches similaires. De plus, le modèle montre que l’utilisation du signal d’erreur de récompense peut accélérer la construction de ces représentations temporelles. Finalement, il montre qu’une telle représentation acquise automatiquement dans le cortex peut fournir l’information nécessaire aux ganglions de la base pour expliquer le signal dopaminergique. Enfin, le troisième article évalue le pouvoir explicatif et prédictif du modèle sur différentes situations comme la présence ou l’absence d’un stimulus (conditionnement classique ou de trace) pendant l’attente de la récompense. En plus de faire des prédictions très intéressantes en lien avec la littérature sur les intervalles de temps, l’article révèle certaines lacunes du modèle qui devront être améliorées. Bref, cette thèse étend les modèles actuels de l’apprentissage des ganglions de la base et du système dopaminergique au développement concurrent de représentations temporelles dans le cortex et aux interactions de ces deux structures.
Resumo:
La navigation repose en majeure partie sur la vision puisque ce sens nous permet de rassembler des informations spatiales de façon simultanée et de mettre à jour notre position par rapport à notre environnement. Pour plusieurs aveugles qui se fient à l’audition, le toucher, la proprioception, l’odorat et l’écholocation pour naviguer, sortir à l’extérieur de chez soi peut représenter un défi considérable. Les recherches sur le circuit neuronal de la navigation chez cette population en particulier s’avèrent donc primordiales pour mieux adapter les ressources aux handicapés visuels et réussir à les sortir de leur isolement. Les aveugles de naissance constituent aussi une population d’intérêt pour l’étude de la neuroplasticité. Comme leur cerveau s’est construit en absence d’intrant visuel, la plupart des structures reliées au sens de la vue sont réduites en volume par rapport à ceux de sujets voyants. De plus, leur cortex occipital, une région normalement dédiée à la vision, possède une activité supramétabolique au repos, ce qui peut représenter un territoire vierge pouvant être recruté par les autres modalités pour exécuter diverses tâches sensorielles. Plusieurs chercheurs ont déjà démontré l’implication de cette région dans des tâches sensorielles comme la discrimination tactile et la localisation auditive. D’autres changements plastiques de nature intramodale ont aussi été observés dans le circuit neuronal de la navigation chez ces aveugles. Par exemple, la partie postérieure de l’hippocampe, impliquée dans l’utilisation de cartes mentales, est réduite en volume alors que la section antérieure est élargie chez ces sujets. Bien que ces changements plastiques anatomiques aient bel et bien été observés chez les aveugles de naissance, il reste toutefois à les relier avec leur aspect fonctionnel. Le but de la présente étude était d’investiguer les corrélats neuronaux de la navigation chez l’aveugle de naissance tout en les reliant avec leurs habiletés spatio-cognitives. La première étude comportementale a permis d’identifier chez les aveugles congénitaux une difficulté d’apprentissage de routes tactiles construites dans des labyrinthes de petite échelle. La seconde étude, employant la technique d’imagerie par résonance magnétique fonctionnelle, a relié ces faiblesses au recrutement de régions cérébrales impliquées dans le traitement d’une perspective égocentrique, comme le lobule pariétal supérieur droit. Alors que des sujets voyants aux yeux bandés excellaient dans la tâche des labyrinthes, ces derniers recrutaient des structures impliquées dans un traitement allocentrique, comme l’hippocampe et le parahippocampe. Par ailleurs, la deuxième étude a confirmé le recrutement du cortex occipital dans une tâche de navigation chez les aveugles seulement. Ceci confirme l’implication de la plasticité intermodale dans des tâches cognitives de plus haut niveau, comme la navigation.
Resumo:
Dans ce travail, nous explorons la faisabilité de doter les machines de la capacité de prédire, dans un contexte d'interaction homme-machine (IHM), l'émotion d'un utilisateur, ainsi que son intensité, de manière instantanée pour une grande variété de situations. Plus spécifiquement, une application a été développée, appelée machine émotionnelle, capable de «comprendre» la signification d'une situation en se basant sur le modèle théorique d'évaluation de l'émotion Ortony, Clore et Collins (OCC). Cette machine est apte, également, à prédire les réactions émotionnelles des utilisateurs, en combinant des versions améliorées des k plus proches voisins et des réseaux de neurones. Une procédure empirique a été réalisée pour l'acquisition des données. Ces dernières ont fourni une connaissance consistante aux algorithmes d'apprentissage choisis et ont permis de tester la performance de la machine. Les résultats obtenus montrent que la machine émotionnelle proposée est capable de produire de bonnes prédictions. Une telle réalisation pourrait encourager son utilisation future dans des domaines exploitant la reconnaissance automatique de l'émotion.
Resumo:
Les fichiers sons qui accompagne mon document sont au format midi. Le programme que nous avons développés pour ce travail est en language Python.
Resumo:
Notre étude est bipartite. En premier lieu nous avons effectué une étude empirique des différences entre les processus de catégorisation explicite (verbalisable) et implicite (non-verbalisable). Nous avons examiné la difficulté et le temps nécessaire pour apprendre trois tâches de catégorisation dites par air de famille, par règle logique conjonctive et par règle logique disjonctive. Nous avons ensuite utilisé un réseau neuronal pour modéliser la catégorisation en lui faisant compléter les mêmes tâches. La comparaison entre les deux nous permet de juger de l’adéquation du modèle. Les données empiriques ont montré un effet de la typicité et de la familiarité en accord avec la documentation et nous trouvons que la tâche de catégorisation par règle disjonctive est la plus difficile alors que la tâche de catégorisation par air de famille est la plus facile. La modélisation par le réseau est une réussite partielle mais nous présentons des solutions afin qu’un réseau futur puisse modéliser le processus catégoriel humain efficacement
Resumo:
Le mouvement masticatoire est généré et coordonné par un générateur de patron central (GPC) situé au niveau du pont. Plusieurs résultats antérieurs de notre laboratoire soutiennent que le réseau de neurones à l’origine de la rythmogénèse est situé dans le noyau sensoriel principal du nerf trijumeau (NVsnpr). Ces mêmes expériences révèlent que des diminutions de la concentration calcique extracellulaire ([Ca2+]e) tiennent une place importante dans la génération des bouffées de décharges des neurones de cette région. Notre laboratoire tente de vérifier si la contribution des astrocytes à l’homéostasie de la concentration calcique extracellulaire est impliquée dans la genèse du rythme. Cette étude a pour but la caractérisation spatiale du syncytium astrocytaire au sein du NVsnpr dorsal et l’étude de l’effet de la [Ca2+]e sur les propriétés astrocytaires électrophysiologiques et de connectivité. Nous avons utilisés pour ce faire la technique d’enregistrement par patch-clamp sur une préparation en tranche de tronc cérébral de rat. Nous démontrons ici que la diminution de la [Ca2+]e n’affecte pas les propriétés électrophysiologiques astrocytaires, mais induit une augmentation de la taille du syncytium. De plus, nous établissons l’existence au sein du NVsnpr dorsal d’une organisation anatomofonctionnelle du réseau astrocytaire calquée sur l’organisation neuronale.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Durant les dernières décennies, l’occurrence des catastrophes naturelles a été fortement à la hausse. En effet, les catastrophes naturelles sont devenues de plus en plus fréquentes. En fait, ces risques dévastateurs ont touché durant les années précédentes différents pays dans des zones très diversifiées et continueront très probablement à être de réelles menaces dans le monde. Puisqu’aucun pays n’est à l’abri des catastrophes naturelles, il s’avère alors utile d’étudier les facteurs déterminants de leur survenue notamment avec la restriction de leurs périodes de retour et donc l’augmentation de leurs chances d’occurrence. Il nous a donc semblé opportun de tester les facteurs sous-jacents de la survenue des catastrophes naturelles. Notre travail se base sur l’application d’un réseau neuronal de type perceptron multicouche pour prédire le nombre des catastrophes naturelles à partir des variables les plus connues théoriquement. Ainsi, nous allons utiliser ce modèle neuronal pour effectuer l’analyse de sensitivité. Cette dernière permet de classer les variables explicatives selon l’importance de leur contribution dans la détermination du nombre de catastrophes naturelles comptabilisées durant la période d’étude. Les résultats obtenus ont montré que le réseau retenu peut prédire le nombre des catastrophes naturelles. De même, les différentes variables possèdent un effet considérable sur la sortie du réseau neuronal mais selon différents ordres d’importance. De ce fait, toutes ces variables contribuent à l’explication d’un problème aussi complexe comme la survenue des catastrophes naturelles.
Resumo:
A partir des résultats d’une enquête effectuée en 2005 sur un échantillon de 203 dirigeants publics, une typologie floue de trois profils a été dégagée en vue de concevoir un système d’affectation des dirigeants en fonction de leur style du leadership, sens du travail, et leurs préoccupations de gestion des ressources humaines. En se basant sur cette typologie floue, des techniques empruntées à l’intelligence artificielle ont été appliquées pour apprendre des règles de classification. Ces techniques sont au nombre de quatre : le réseau neuronal (Neural Network), l’algorithme génétique (Genetic Algorithm), l’arbre de décision (Decision Tree) et la théorie des ensembles approximatifs (Rough Sets). Les résultats de l’étude ainsi que ses perspectives seront présentées et discutés tout au long de cette communication.
Resumo:
Afin d'enrichir les données de corpus bilingues parallèles, il peut être judicieux de travailler avec des corpus dits comparables. En effet dans ce type de corpus, même si les documents dans la langue cible ne sont pas l'exacte traduction de ceux dans la langue source, on peut y retrouver des mots ou des phrases en relation de traduction. L'encyclopédie libre Wikipédia constitue un corpus comparable multilingue de plusieurs millions de documents. Notre travail consiste à trouver une méthode générale et endogène permettant d'extraire un maximum de phrases parallèles. Nous travaillons avec le couple de langues français-anglais mais notre méthode, qui n'utilise aucune ressource bilingue extérieure, peut s'appliquer à tout autre couple de langues. Elle se décompose en deux étapes. La première consiste à détecter les paires d’articles qui ont le plus de chance de contenir des traductions. Nous utilisons pour cela un réseau de neurones entraîné sur un petit ensemble de données constitué d'articles alignés au niveau des phrases. La deuxième étape effectue la sélection des paires de phrases grâce à un autre réseau de neurones dont les sorties sont alors réinterprétées par un algorithme d'optimisation combinatoire et une heuristique d'extension. L'ajout des quelques 560~000 paires de phrases extraites de Wikipédia au corpus d'entraînement d'un système de traduction automatique statistique de référence permet d'améliorer la qualité des traductions produites. Nous mettons les données alignées et le corpus extrait à la disposition de la communauté scientifique.