984 resultados para climate-vegetation interaction
Resumo:
The frequency of electric organ discharges (EOD) of a gymnotiform fish of "pulse" frequency (40-100 Hz) from South America - Ramphicthys rostratuswas studied. The animals were settled in pairs in a aquarium and thus observed: variation in EOD frequency had at least two components: one more positively correlated with temperature, another less positively correlated due to social interaction.
Resumo:
The Santa Tenesinha region in northeaster Mato Grosso has a varied vegetation which is principally hammock pantanal. The flat clayey alluvial ground between the hummocks is coveted with a continuous non-cerrado ground cover dominated by grasses but which harbors sedges and a lange herb flora. No woody plants grow in it. The tops of the 10-20m wide, slightly elliptical hummocks, 1.5-2 m high, 10-40 per hectare, are covered with cerrado plants: herbs, semlshrubs, thin- and thick-stemmed shrubs and low trees. For 4-5 months during the latter part of the rainy season, the regional water table rises to the surface and the ground between the hummocks becomes saturated or floods up to 1.5-2 m deep. The tops of the hummocks almost always remain above high water level. In the dry season the surface soil dries out completely. This alternation of saturation or shallow flooding and dryness, prevents woody plant, growth between the hummocks, and except for a few tolerant species, also prevents woody plant. growth on the lower part of the hummochs. The gallery forests in the pantanal are seasonally flooded more deeply but their soil does not dry out so thonoughly in the dry season so woody plant growth is not prevented.
Resumo:
The present study investigates peer to peer oral interaction in two task based language teaching classrooms, one of which was a self-declared cohesive group, and the other a self- declared less cohesive group, both at B1 level. It studies how learners talk cohesion into being and considers how this talk leads to learning opportunities in these groups. The study was classroom-based and was carried out over the period of an academic year. Research was conducted in the classrooms and the tasks were part of regular class work. The research was framed within a sociocognitive perspective of second language learning and data came from a number of sources, namely questionnaires, interviews and audio recorded talk of dyads, triads and groups of four students completing a total of eight oral tasks. These audio recordings were transcribed and analysed qualitatively for interactions which encouraged a positive social dimension and behaviours which led to learning opportunities, using conversation analysis. In addition, recordings were analysed quantitatively for learning opportunities and quantity and quality of language produced. Results show that learners in both classes exhibited multiple behaviours in interaction which could promote a positive social dimension, although behaviours which could discourage positive affect amongst group members were also found. Analysis of interactions also revealed the many ways in which learners in both the cohesive and less cohesive class created learning opportunities. Further qualitative analysis of these interactions showed that a number of factors including how learners approach a task, the decisions they make at zones of interactional transition and the affective relationship between participants influence the amount of learning opportunities created, as well as the quality and quantity of language produced. The main conclusion of the study is that it is not the cohesive nature of the group as a whole but the nature of the relationship between the individual members of the small group completing the task which influences the effectiveness of oral interaction for learning.This study contributes to our understanding of the way in which learners individualise the learning space and highlights the situated nature of language learning. It shows how individuals interact with each other and the task, and how talk in interaction changes moment-by-moment as learners react to the ‘here and now’ of the classroom environment.
Resumo:
Geochemical and geochronological analyses of samples of surficial Acre Basin sediments and fossils indicate an extensive fluvial-lacustrine system, occupying this region, desiccated slowly during the last glacial cycle (LGC). This research documents direct evidence for aridity in western Amazonia during the LGC and is important in establishing boundary conditions for LGC climate models as well as in correlating marine and continental (LGC) climate conditions.
Resumo:
The aborptlon of momentum by the vegetation Is studied In this work through an analytical approach which also provides the appropriate formulations to describe wind velocity and drffusivities profiles above and Inside the space occupied by the foliage elements. A first comparison between the observed and calculated profiles of wind volocity for Amazonian forest (Réserva Pucke, Manaus - AM) is presented to test the realism of the model.
Resumo:
The geographical distribution of the African Tilapia Oreochromis mossambicusin Suriname is restricted to a narrow strip of land along the Atlantic coast. Within the coastal plain, O. mossambicusoccurs in brackish lagoons, oligohaline canals, and shell-sand pit lakes. Physico-chemical characteristics and phytoplankton composition of representative Tilapia water bodies are described. Blue-green algae and fine flocculent detritus are dominant food items in the diet of the Tilapia, while Rotifera and microcrustacea are also important in the diet of larvae and juveniles. Intraspecific diet overlap among ontogenetic stages of the Tilapia did not differ significantly from 1, which means that these diets showed complete overlap. Interspecific diet overlap between the Tilapia and the indigenous armoured catfish Hoplosternum littoralewere moderate or low. The results are discussed in relation to recent developments in the Surinamese fisheries and aquaculture sector.
Resumo:
The species composition of the seasonal várzea forest growing on a bank of the Ilha de Marchantaria / lower Solimões-Amazonas River, Brazil was studied in an area of slightly less than one hectare. Two biomass plots were harvested. Forty-seven arboreal species representing 46 genera in 25 families were recorded. Tree density was 1086 per hectare. Total basal area was 45 m2 ha1. Mean species density was 6.5 ± 1.98 per 100 m2. The most abundant species were Crataeva benthamii(Capparidaceae), Laetia corymbutosa(Flacourtiaceae) and Vitex cymosa(Verbenaceae). The highest basal area per species was 10.2 m2 for Pseudobombax munguba(Bombacaceae). The common species are known to be typical floristic elements of the seasonal varzea forest. Above ground dry biomass was equal to 97 and 255 t ha', respectively. Its chemical composition is characterized by comparatively high bioelement contents equal to 2.4 percent on the average. Calcium was the most important bioelement. Structure of the forest and age darings of trees allow the successional classification of the stands.
Resumo:
Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.
Resumo:
During the last decade Mongolia’s region was characterized by a rapid increase of both severity and frequency of drought events, leading to pasture reduction. Drought monitoring and assessment plays an important role in the region’s early warning systems as a way to mitigate the negative impacts in social, economic and environmental sectors. Nowadays it is possible to access information related to the hydrologic cycle through remote sensing, which provides a continuous monitoring of variables over very large areas where the weather stations are sparse. The present thesis aimed to explore the possibility of using NDVI as a potential drought indicator by studying anomaly patterns and correlations with other two climate variables, LST and precipitation. The study covered the growing season (March to September) of a fifteen year period, between 2000 and 2014, for Bayankhongor province in southwest Mongolia. The datasets used were MODIS NDVI, LST and TRMM Precipitation, which processing and analysis was supported by QGIS software and Python programming language. Monthly anomaly correlations between NDVI-LST and NDVI-Precipitation were generated as well as temporal correlations for the growing season for known drought years (2001, 2002 and 2009). The results show that the three variables follow a seasonal pattern expected for a northern hemisphere region, with occurrence of the rainy season in the summer months. The values of both NDVI and precipitation are remarkably low while LST values are high, which is explained by the region’s climate and ecosystems. The NDVI average, generally, reached higher values with high precipitation values and low LST values. The year of 2001 was the driest year of the time-series, while 2003 was the wet year with healthier vegetation. Monthly correlations registered weak results with low significance, with exception of NDVI-LST and NDVI-Precipitation correlations for June, July and August of 2002. The temporal correlations for the growing season also revealed weak results. The overall relationship between the variables anomalies showed weak correlation results with low significance, which suggests that an accurate answer for predicting drought using the relation between NDVI, LST and Precipitation cannot be given. Additional research should take place in order to achieve more conclusive results. However the NDVI anomaly images show that NDVI is a suitable drought index for Bayankhongor province.
Resumo:
BACKGROUND: Furniture companies can analyze their safety status using quantitative measures. However, the data needed are not always available and the number of accidents is under-reported. Safety climate scales may be an alternative. However, there are no validated Portuguese scales that account for the specific attributes of the furniture sector. OBJECTIVE: The current study aims to develop and validate an instrument that uses a multilevel structure to measure the safety climate of the Portuguese furniture industry. METHODS: The Safety Climate in Wood Industries (SCWI) model was developed and applied to the safety climate analysis using three different scales: organizational, group and individual. A multilevel exploratory factor analysis was performed to analyze the factorial structure. The studied companies’ safety conditions were also analyzed. RESULTS: Different factorial structures were found between and within levels. In general, the results show the presence of a group-level safety climate. The scores of safety climates are directly and positively related to companies’ safety conditions; the organizational scale is the one that best reflects the actual safety conditions. CONCLUSIONS: The SCWI instrument allows for the identification of different safety climates in groups that comprise the same furniture company and it seems to reflect those groups’ safety conditions. The study also demonstrates the need for a multilevel analysis of the studied instrument.
Resumo:
The aim of this study is evaluating the interaction between several base pen grade asphalt binders (35/50, 50/70, 70/100, 160/220) and two different plastic wastes (EVA and HDPE), for a set of new polymer modified binders produced with different amounts of both plastic wastes. After analysing the results obtained for the several polymer modified binders evaluated in this study, including a commercial modified binder, it can be concluded that the new PMBs produced with the base bitumen 70/100 and 5% of each plastic waste (HDPE or EVA) results in binders with very good performance, similar to that of the commercial modified binder.
Resumo:
Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.
Resumo:
Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for human-computer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of visionbased interaction systems could be the same for all applications and thus facilitate the implementation. For hand posture recognition, a SVM (Support Vector Machine) model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM (Hidden Markov Model) model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications. To validate the proposed framework two applications were implemented. The first one is a real-time system able to interpret the Portuguese Sign Language. The second one is an online system able to help a robotic soccer game referee judge a game in real time.
Resumo:
Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for humancomputer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of vision-based interaction systems can be the same for all applications and thus facilitate the implementation. In order to test the proposed solutions, three prototypes were implemented. For hand posture recognition, a SVM model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications.
Resumo:
Novel input modalities such as touch, tangibles or gestures try to exploit human's innate skills rather than imposing new learning processes. However, despite the recent boom of different natural interaction paradigms, it hasn't been systematically evaluated how these interfaces influence a user's performance or whether each interface could be more or less appropriate when it comes to: 1) different age groups; and 2) different basic operations, as data selection, insertion or manipulation. This work presents the first step of an exploratory evaluation about whether or not the users' performance is indeed influenced by the different interfaces. The key point is to understand how different interaction paradigms affect specific target-audiences (children, adults and older adults) when dealing with a selection task. 60 participants took part in this study to assess how different interfaces may influence the interaction of specific groups of users with regard to their age. Four input modalities were used to perform a selection task and the methodology was based on usability testing (speed, accuracy and user preference). The study suggests a statistically significant difference between mean selection times for each group of users, and also raises new issues regarding the “old” mouse input versus the “new” input modalities.