955 resultados para benzimidazole derivative
Resumo:
Diglycyl triperoxodivanadate [V2O2(O2)3(Gly H)2(H2O)2], a synthetic compound with μ-peroxo-bridge derived from H2O2and vanadate, oxidized bromide to a bromination-competent intermediate in phosphate buffer and physiological pH. This is in contrast to the requirement of acid medium with H2O2as the oxidant. Addition of its solid to bromide solution instantly produced a 262-nm-absorbing compound that converted phenol red (a trap) to its 592-nm-absorbing bromo-derivative. The high bromination activity was lost on dissolving this compound in water and the solution showed the presence of peroxovanadates (mono and di) and vanadates (V1and oligomeric V10) in51V-NMR spectrum. Of these, diperoxovanadate and vanadate together supported slow bromination activity by a second set of reactions including bromide-assisted reductive formation of vanadyl. Bromination activity dependent on vanadyl was sensitive to oxidation by excess H2O2and to complexation by EDTA, whereas that of triperoxodivanadate was relatively insensitive. Vanadyl and diperoxovanadate are capable of forming a μ-peroxo-bridged complex that is essentially similar to the synthetic vanadate dimer used in the present experiments. It appears that a μ-peroxo-intermediate is the proximal oxidant of bromide in vanadium-catalyzed bromoperoxidation.
Resumo:
Metabolic fate of menthofuran (II) in rats was investigated. Menthofuran (II) was administered orally (200 mg/kg of the body weight/day) to rats for 3 days. The following metabolites were isolated from the urine of these animals: p-cresol (VI), 5-methyl-2-cyclohexen-1- one (VII), 3-methylcyclohexanone (VIII), 3-methylcyclohexanol (IX), 4- hydroxy-4-methyl-2-cyclohexen-1-one (V), geranic acid (XI), neronic acid (XII), benzoic acid (XIII), and 2-[2'-keto-4'- methylcyclohexyl]propionic acid (X). Incubation of menthofuran (II) with phenobarbital-induced rat liver microsomes in the presence of NADPH and oxygen resulted in the formation of a metabolite tentatively identified as 2-Z-(2'-keto-4'-methylcyclohexylidene)propanal (III; alpha,beta-unsaturated-gamma-keto-aldehyde). The structure assigned was further supported by trapping this metabolite (III) as a cinnoline derivative. Phenobarbital-induced rat liver microsomes also converted 4- methyl-2-cyclohexenone (IV) to 4-hydroxy-4-methyl-2-cyclohexenone (V) and p-cresol (VI) in the presence of NADPH and oxygen. On the basis of both in vivo and in vitro studies, a possible mechanism for the formation of p-cresol from menthofuran has been proposed.
Resumo:
Background The Global Burden of Diseases (GBD), Injuries, and Risk Factors study used the disability-adjusted life year (DALY) to quantify the burden of diseases, injuries, and risk factors. This paper provides an overview of injury estimates from the 2013 update of GBD, with detailed information on incidence, mortality, DALYs and rates of change from 1990 to 2013 for 26 causes of injury, globally, by region and by country. Methods Injury mortality was estimated using the extensive GBD mortality database, corrections for ill-defined cause of death and the cause of death ensemble modelling tool. Morbidity estimation was based on inpatient and outpatient data sets, 26 cause-of-injury and 47 nature-of-injury categories, and seven follow-up studies with patient-reported long-term outcome measures. Results In 2013, 973 million (uncertainty interval (UI) 942 to 993) people sustained injuries that warranted some type of healthcare and 4.8 million (UI 4.5 to 5.1) people died from injuries. Between 1990 and 2013 the global age-standardised injury DALY rate decreased by 31% (UI 26% to 35%). The rate of decline in DALY rates was significant for 22 cause-of-injury categories, including all the major injuries. Conclusions Injuries continue to be an important cause of morbidity and mortality in the developed and developing world. The decline in rates for almost all injuries is so prominent that it warrants a general statement that the world is becoming a safer place to live in. However, the patterns vary widely by cause, age, sex, region and time and there are still large improvements that need to be made.
Resumo:
Antitubercular treatment is directed against actively replicating organisms. There is an urgent need to develop drugs targeting persistent subpopulations of Mycobacterium tuberculosis. The DevR response regulator is believed to play a key role in bacterial dormancy adaptation during hypoxia. We developed a homology-based model of DevR and used it for the rational design of inhibitors. A phenylcoumarin derivative (compound 10) identified by in silico pharmacophore-based screening of 2.5 million compounds employing protocols with some novel features including a water-based pharmacophore query, was characterized further. Compound 10 inhibited DevR binding to target DNA, down-regulated dormancy genes transcription, and drastically reduced survival of hypoxic but not nutrient-starved dormant bacteria or actively growing organ ` isms. Our findings suggest that compound 10 ``locks'' DevR in an inactive conformation that is unable to bind cognate DNA and induce the dormancy regulon. These results provide proof-of-concept for DevR as a novel target to develop molecules with sterilizing activity against tubercle bacilli.
Resumo:
Introduction Single nucleotide polymorphisms in ERAP2 are strongly associated with ankylosing spondylitis (AS). One AS-associated single nucleotide polymorphism, rs2248374, causes a truncated ERAP2 protein that is degraded by nonsense-mediated decay. Approximately 25% of the populations of European ancestry are therefore natural ERAP2 knockouts. We investigated the effect of this associated variant on HLA class I allele presentation, surface heavy chains, endoplasmic reticulum (ER) stress markers and cytokine gene transcription in AS. Methods Patients with AS and healthy controls with either AA or GG homozygous status for rs2248374 were studied. Antibodies to CD14, CD19-ECD, HLA-A-B-C, Valpha7.2, CD161, anti-HC10 and anti-HLA-B27 were used to analyse peripheral blood mononuclear cells. Expression levels of ER stress markers (GRP78 and CHOP) and proinflammatory genes (tumour necrosis factor (TNF), IL6, IL17 and IL22) were assessed by qPCR. Results There was no significant difference in HLAclass I allele presentation or major histocompatibility class I heavy chains or ER stress markers GRP78 and CHOP or proinflammatory gene expression between genotypes for rs2248374 either between cases, between cases and controls, and between controls. Discussion Large differences were not seen in HLAB27 expression or cytokine levels between subjects with and without ERAP2 in AS cases and controls. This suggests that ERAP2 is more likely to influence AS risk through other mechanisms.
Resumo:
For an operator T in the class B-n(), introduced by Cowen and Douglas, the simultaneous unitary equivalence class of the curvature and the covariant derivatives up to a certain order of the corresponding bundle E-T determine the unitary equivalence class of the operator T. In a subsequent paper, the authors ask if the simultaneous unitary equivalence class of the curvature and these covariant derivatives are necessary to determine the unitary equivalence class of the operator T is an element of B-n(). Here we show that some of the covariant derivatives are necessary. Our examples consist of homogeneous operators in B-n(). For homogeneous operators, the simultaneous unitary equivalence class of the curvature and all its covariant derivatives at any point w in the unit disc are determined from the simultaneous unitary equivalence class at 0. This shows that it is enough to calculate all the invariants and compare them at just one point, say 0. These calculations are then carried out in number of examples. One of our main results is that the curvature along with its covariant derivative of order (0, 1) at 0 determines the equivalence class of generic homogeneous Hermitian holomorphic vector bundles over the unit disc.
Resumo:
The present work deals with the anticancer effect of benzimidazole derivatives associated with the pyridine framework. By varying the functional group at N-terminal of the benzimidazole by different L-amino acids, several 2-(4-(2,2,2-trifluoroethoxy)-3-methylpyridin-2-ylthio)-1H-benzo[d]imid azole derivatives 9(a-j) were synthesized. Their chemical structures were confirmed by H-1 NMR, IR and mass spectroscopic techniques. The synthesized compounds were examined for their antiproliferative effects against human leukemia cell lines, K562 and CEM. The preliminary results showed most of the derivatives had moderate antitumor activity. Compound 9j containing cysteine residue exhibited good inhibition compared to other amino acid resides. In addition DNA fragmentation results suggest that 9j is more cytotoxic and able to induce apoptosis.
Resumo:
Protection of the amino group and activation of the carboxylic acid groups are the most important steps associated with any peptide synthesis protocol; hence, a one-pot process to achieve these is highly desirable. A possible strategy is to use pentafluorophenyl carbonates to simultaneously protect the amino group as a carbamate derivative and activate the carboxylic acid group as a pentafluorophenyl ester. A detailed study is carried out to understand the scope and limitations of this method using five different pentaflurophenyl carbonates. The efficiency of these one-pot reactions depends largely on the nature of the pentafluorophenyl carbonates and also on the nature of the amino acids. Electron deficient and sterically less demanding carbonates reacted faster than the others, whereas amino acids with longeraliphatic side chains gave better yields than more polar amino acids.
Resumo:
Objective: To systematically review studies reporting the prevalence in general adult inpatient populations of foot disease disorders (foot wounds, foot infections, collective ‘foot disease’) and risk factors (peripheral arterial disease (PAD), peripheral neuropathy (PN), foot deformity). Methods: A systematic review of studies published between 1980 and 2013 was undertaken using electronic databases (MEDLINE, EMBASE and CINAHL). Keywords and synonyms relating to prevalence, inpatients, foot disease disorders and risk factors were used. Studies reporting foot disease or risk factor prevalence data in general inpatient populations were included. Included study's reference lists and citations were searched and experts consulted to identify additional relevant studies. 2 authors, blinded to each other, assessed the methodological quality of included studies. Applicable data were extracted by 1 author and checked by a second author. Prevalence proportions and SEs were calculated for all included studies. Pooled prevalence estimates were calculated using random-effects models where 3 eligible studies were available. Results: Of the 4972 studies initially identified, 78 studies reporting 84 different cohorts (total 60 231 517 participants) were included. Foot disease prevalence included: foot wounds 0.01–13.5% (70 cohorts), foot infections 0.05–6.4% (7 cohorts), collective foot disease 0.2–11.9% (12 cohorts). Risk factor prevalence included: PAD 0.01–36.0% (10 cohorts), PN 0.003–2.8% (6 cohorts), foot deformity was not reported. Pooled prevalence estimates were only able to be calculated for pressure ulcer-related foot wounds 4.6% (95% CI 3.7% to 5.4%)), diabetes-related foot wounds 2.4% (1.5% to 3.4%), diabetes-related foot infections 3.4% (0.2% to 6.5%), diabetes-related foot disease 4.7% (0.3% to 9.2%). Heterogeneity was high in all pooled estimates (I2=94.2–97.8%, p<0.001). Conclusions: This review found high heterogeneity, yet suggests foot disease was present in 1 in every 20 inpatients and a major risk factor in 1 in 3 inpatients. These findings are likely an underestimate and more robust studies are required to provide more precise estimates.
Resumo:
A versatile affinity matrix in which the ligand of interest is linked to the matrix through a connector arm containing a disulfide bond is described. It can be synthesized from any amino-substituted matrix by successive reaction with 2-imino-thio-lane, 5, 5'-dithiobis(2-nitrobenzoic acid), and a thiol derivative of the ligand of choice. The repertoire of ligands can be significantly increased by the appropriate use of avidin-biotin bridges. After adsorption of the material to be fractionated, elution can be effected by reducing the disulfide bond in the connector arm with dithiothreitol. Examples of the preparation and use of various affinity matrices based on amino-substituted Sepharose 6MB are given. One involves the immobilization of the Fab' fragment of a monoclonal antibody against Aspergillus oryzae β-galactosidase and the specific binding of that enzyme to the resulting immunoaffinity matrix. Another involves the immobilization of N-biotinyl-2-thioethylamine followed by complex formation with avidin. The resulting avidin-substituted matrix was used for the selective adsorption and subsequent recovery of mouse hybridoma cells producing anti-avidin antibodies. By further complexing the avidin-substituted matrix with appropriate biotinylated antigens, it should be possible to fractionate cells producing antibodies against a variety of antigens.
Resumo:
One of two boundary conditions generally assumed in solutions of the dynamo equation is related to the disappearance of the azimuthal field at the boundary. Parker (1984) points out that for the realization of this condition the field must escape freely through the surface. Escape requires that the field be detached from the gas in which it is embedded. In the case of the sun, this can be accomplished only through reconnection in the tenuous gas above the visible surface. Parker concludes that the observed magnetic activity on the solar surface permits at most three percent of the emerging flux to escape. He arrives at the conclusion that, instead of B(phi) = 0, the partial derivative of B(phi) to r is equal to zero. The present investigation is concerned with the effect of changing the boundary condition according to Parker's conclusion. Implications for the solar convection zone are discussed.
Resumo:
In reporting a total synthesis of erythromycin (la) we described in the preceding paper1 the synthesis of the erythronolide A seco acid derivative 2 in optically active form. In this paper we wish to report a successful transformation of 2 to 12 (synthetically equivalent to erythronolide A) via lactonization and also demonstrate that the proper functionalization of a substrate is critical for the successful lactonization.
Resumo:
In the preceding paper' we described the preparation of the key lactone intermediate la in optically active form. In this paper we report the synthesis of erythromycin (2) from la. In essence,this transformation involves the glycosidation of a suitable derivative of la with L-cladinose and D-desosamine and the generation of the C-9 ketone functionality.
Resumo:
T cell-mediated cytotoxicity against Mycobacterium tuberculosis (MTB)-infected macrophages may be a major mechanism of specific host defense, but little is known about such activities in the lung. Thus, the capacity of alveolar lymphocyte MTB-specific cell lines (AL) and alveolar macrophages (AM) from tuberculin skin test-positive healthy subjects to serve as CTL and target cells, respectively, in response to MTB (H37Ra) or purified protein derivative (PPD) was investigated. Mycobacterial Ag-pulsed AM were targets of blood CTL activity at E:T ratios of > or = 30:1 (51Cr release assay), but were significantly more resistant to cytotoxicity than autologous blood monocytes. PPD- plus IL-2-expanded AL and blood lymphocytes were cytotoxic for autologous mycobacterium-stimulated monocytes at E:T ratios of > or = 10:1. The CTL activity of lymphocytes expanded with PPD was predominantly class II MHC restricted, whereas the CTL activity of lymphocytes expanded with PPD plus IL-2 was both class I and class II MHC restricted. Both CD4+ and CD8+ T cells were enriched in BL and AL expanded with PPD and IL-2, and both subsets had mycobacterium-specific CTL activity. Such novel cytotoxic responses by CD4+ and CD8+ T cells may be a major mechanism of defense against MTB at the site of disease activity.