993 resultados para Systems productive
Resumo:
This paper considers the manoeuvring of underactuated surface vessels. The control objective is to steer the vessel to reach a manifold which encloses a waypoint. A transformation of configuration variables and a potential field are used in a Port-Hamiltonian framework to design an energy-based controller. With the proposed controller, the geometric task associated with the manoeuvring problem depends on the desired potential energy (closed-loop) and the dynamic task depends on the total energy and damping. Therefore, guidance and motion control are addressed jointly, leading to model-energy-based trajectory generation.
Resumo:
In attempting to build intelligent litigation support tools, we have moved beyond first generation, production rule legal expert systems. Our work integrates rule based and case based reasoning with intelligent information retrieval. When using the case based reasoning methodology, or in our case the specialisation of case based retrieval, we need to be aware of how to retrieve relevant experience. Our research, in the legal domain, specifies an approach to the retrieval problem which relies heavily on an extended object oriented/rule based system architecture that is supplemented with causal background information. We use a distributed agent architecture to help support the reasoning process of lawyers. Our approach to integrating rule based reasoning, case based reasoning and case based retrieval is contrasted to the CABARET and PROLEXS architectures which rely on a centralised blackboard architecture. We discuss in detail how our various cooperating agents interact, and provide examples of the system at work. The IKBALS system uses a specialised induction algorithm to induce rules from cases. These rules are then used as indices during the case based retrieval process. Because we aim to build legal support tools which can be modified to suit various domains rather than single purpose legal expert systems, we focus on principles behind developing legal knowledge based systems. The original domain chosen was theAccident Compensation Act 1989 (Victoria, Australia), which relates to the provision of benefits for employees injured at work. For various reasons, which are indicated in the paper, we changed our domain to that ofCredit Act 1984 (Victoria, Australia). This Act regulates the provision of loans by financial institutions. The rule based part of our system which provides advice on the Credit Act has been commercially developed in conjunction with a legal firm. We indicate how this work has lead to the development of a methodology for constructing rule based legal knowledge based systems. We explain the process of integrating this existing commercial rule based system with the case base reasoning and retrieval architecture.
Resumo:
In this paper we discuss the strengths and weaknesses of a range of artificial intelligence approaches used in legal domains. Symbolic reasoning systems which rely on deductive, inductive and analogical reasoning are described and reviewed. The role of statistical reasoning in law is examined, and the use of neural networks analysed. There is discussion of architectures for, and examples of, systems which combine a number of these reasoning strategies. We conclude that to build intelligent legal decision support systems requires a range of reasoning strategies.
A low-complexity flight controller for Unmanned Aircraft Systems with constrained control allocation
Resumo:
In this paper, we propose a framework for joint allocation and constrained control design of flight controllers for Unmanned Aircraft Systems (UAS). The actuator configuration is used to map actuator constraint set into the space of the aircraft generalised forces. By constraining the demanded generalised forces, we ensure that the allocation problem is always feasible; and therefore, it can be solved without constraints. This leads to an allocation problem that does not require on-line numerical optimisation. Furthermore, since the controller handles the constraints, and there is no need to implement heuristics to inform the controller about actuator saturation. The latter is fundamental for avoiding Pilot Induced Oscillations (PIO) in remotely operated UAS due to the rate limit on the aircraft control surfaces.
Resumo:
As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.
Resumo:
Induction is an interesting model of legal reasoning, since it provides a method of capturing initial states of legal principles and rules, and adjusting these principles and rules over time as the law changes. In this article I explain how Artificial Intelligence-based inductive learning algorithms work, and show how they have been used in law to model legal domains. I identify some problems with implementations undertaken in law to date, and create a taxonomy of appropriate cases to use in legal inductive inferencing systems. I suggest that inductive learning algorithms have potential in modeling law, but that the artificial intelligence implementations to date are problematic. I argue that induction should be further investigated, since it has the potential to be an extremely useful mechanism for understanding legal domains.
Resumo:
In this paper we provide an overview of a number of fundamental reasoning formalisms in artificial intelligence which can and have been used in modelling legal reasoning. We describe deduction, induction and analogical reasoning formalisms, and show how they can be used separately to model legal reasoning. We argue that these formalisms can be used together to model legal reasoning more accurately, and describe a number of attempts to integrate the approaches.
Resumo:
Urban agriculture plays an increasingly vital role in supplying food to urban populations. Changes in Information and Communications Technology (ICT) are already driving widespread change in diverse food-related industries such as retail, hospitality and marketing. It is reasonable to suspect that the fields of ubiquitous technology, urban informatics and social media equally have a lot to offer the evolution of core urban food systems. We use communicative ecology theory to describe emerging innovations in urban food systems according to their technical, discursive and social components. We conclude that social media in particular accentuate fundamental social interconnections normally effaced by conventional industrialised approaches to food production and consumption.
Resumo:
Brisbane City Hall (BCH) is arguably one of Brisbane’s most notable and iconic buildings. Serving as the public’s central civic and municipal building since 1930, the importance of this heritage listed building to cultural significance and identity is unquestionable. This attribute is reflected within the local government, with a simplified image of the halls main portico entrance supplying Brisbane City Council with its insignia and trademark signifier. Regardless of these qualities, this building has been neglected in a number of ways, primarily in the physical sense with built materials, but also, and just as importantly, through inaccurate and undocumented works. Numerous restoration and renovation works have been undertaken throughout BCH’s lifetime, however the records of these amendments are far and few between. Between 2010 and 2013, BCH underwent major restoration works, the largest production project undertaken on the building since its initial construction. Just prior to this conservation process, the full extent of the buildings deterioration was identified, much of which there was little to no original documentation of. This has led to a number of issues pertaining to what investigators expected to find within the building, versus what was uncovered (the unexpected), which have resulted directly from this lack of data. This absence of record keeping is the key factor that has contributed to the decay and unknown deficiencies that had amassed within BCH. Accordingly, this raises a debate about the methods of record keeping, and the need for a more advanced process that is able to be integrated within architectural and engineering programs, whilst still maintaining the ability to act as a standalone database. The immediate objective of this research is to investigate the restoration process of BCH, with focus on the auditorium, to evaluate possible strategies to record and manage data connected to building pathology so that a framework can be developed for a digital heritage management system. The framework produced for this digital tool will enable dynamic uses of a centralised database and aims to reduce the significant data loss. Following an in-depth analysis of this framework, it can be concluded that the implementation of the suggested digital tool would directly benefit BCH, and could ultimately be incorporated into a number of heritage related built form.
Resumo:
Light gauge steel roofing systems made of thin profiled roof sheeting and battens are used commonly in residential, industrial and commercial buildings. Their critical design load combination is that due to wind uplift forces that occur during high wind events such as tropical cyclones and thunderstorms. However, premature local failures at their screw connections have been a concern for many decades since cyclone Tracy that devastated Darwin in 1974. Extensive research that followed cyclone Tracy on the pull-through and pull-out failures of roof sheeting to batten connections has significantly improved the safety of roof sheeting. However, this has made the batten to rafter/truss connection the weakest, and recent wind damage investigations have shown the failures of these connections and the resulting loss of entire roof structures. Therefore an experimental research program using both small scale and full scale air-box tests is currently under way to investigate the pull-through failures of thin-walled steel battens under high wind uplift forces. Tests have demonstrated that occurrence of pull-through failures in the bottom flanges of steel batttens and the need to develop simple test and design methods as a function of many critical parameters such as steel batten geometry, thickness and grade, screw fastener sizes and other fastening details. This paper presents the details of local failures that occur in light fauge roofing systems, a review of the current design and test methods for steel battens and associated short comings, and the test results obtained to date on pull-through failures of battens from small scale and full scale tests. Finally, it proposes the use of suitable small scale test methods that can be used by both researchers and manufacturers of such screw-fastened light gauge steel batten systems.
Resumo:
This paper discusses a method to quantify robust autonomy of Uninhabited Vehicles and Systems (UVS) in aerospace, marine, or land applications. Based on mission-vehicle specific performance criteria, we define an system utility function that can be evaluated using simulation scenarios for an envelope of environmental conditions. The results of these evaluations are used to compute a figure of merit or measure for operational efectiveness (MOE). The procedure is then augmented to consider faults and the performance of mechanisms to handle these faulty operational modes. This leads to a measure of robust autonomy (MRA). The objective of the proposed figures of merit is to assist in decision making about vehicle performance and reliability at both vehicle development stage (using simulation models) and at certification stage (using hardware-in-the-loop testing). Performance indices based on dynamic and geometric tasks associated with vehicle manoeuvring problems are proposed, and an example of a two- dimensional y scenario is provided to illustrate the use of the proposed figures of merit.
Resumo:
This paper presents a method for the estimation of thrust model parameters of uninhabited airborne systems using specific flight tests. Particular tests are proposed to simplify the estimation. The proposed estimation method is based on three steps. The first step uses a regression model in which the thrust is assumed constant. This allows us to obtain biased initial estimates of the aerodynamic coeficients of the surge model. In the second step, a robust nonlinear state estimator is implemented using the initial parameter estimates, and the model is augmented by considering the thrust as random walk. In the third step, the estimate of the thrust obtained by the observer is used to fit a polynomial model in terms of the propeller advanced ratio. We consider a numerical example based on Monte-Carlo simulations to quantify the sampling properties of the proposed estimator given realistic flight conditions.
Resumo:
This research has analysed both reciprocity and feedback mechanisms in multi-antenna wireless systems. It has presented the basis of an effective CSI feedback mechanism that efficiently provides the transmitter with the minimum information to allow the accurate knowledge of a rapidly changing channel. The simulations have been conducted using MATLAB to measure the improvement when the channel is estimated at the receiver in a 2 X 2 multi-antenna system and compared to the case of perfect channel knowledge at the receiver.