891 resultados para STRUCTURE-ACTIVITY RELATIONSHIPS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prepared for the Employment and Training Administration, U.S. Department of Labor, under Research and Development Grant No. 91-48-78-39.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lines of transgenic tobacco have been generated that are transformed with either the wild-type peanut peroxidase prxPNC2 cDNA, driven by the CaMV3 5S promoter (designated 35S::prxPNC2-WT) or a mutated PNC2 cDNA in which the asparagine residue (Asn(189)) associated with the point of glycan attachment (Asn(189)) has been replaced with alanine (designated 35S::prxPNC2-M). PCR, using genomic DNA as template, has confirmed the integration of the 35S::prxPNC2-WT and 35::prxPNC2-M constructs into the tobacco genome, and western analysis using anti-PNC2 antibodies has revealed that the prxPNC2-WT protein product (PNC2-WT) accumulates with a molecular mass of 34,670 Da, while the prxPNC2-M protein product (PNC2-M) accumulates with a molecular mass of 32,600 Da. Activity assays have shown that both PNC2-WT and PNC2-M proteins accumulate preferentially in the ionically-bound cell wall fraction, with a significantly higher relative accumulation of the PNC2-WT isoenzyme in the ionically-bound fraction when compared with the PNC2-M isoform. Kinetic analysis of the partially purified PNC2-WT isozyme revealed an affinity constant (apparent K-m) of 11.2 mM for the reductor substrate guaiacol and 1.29 mM for H2O2, while values of 11.9 mM and 1.12 mM were determined for the PNC2-M isozyme. A higher Arrenhius activation energy (E,,) was determined for the PNC2-M isozyme (22.9 kJ mol(-1)), when compared with the PNC2-WT isozyme (17.6 kJ mol(-1)), and enzyme assays have determined that the absence of the glycan influences the thermostability of the PNC2-M isozyme. These results are discussed with respect to the proposed roles of N-linked glycans attached to plant peroxidases. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on a newly established sequencing strategy featured by its efficiency, simplicity, and easy manipulation, the sequences of four novel cyclotides (macrocyclic knotted proteins) isolated from an Australian plant Viola hederaceae were determined. The three-dimensional solution structure of V. hederaceae leaf cyclotide-1 ( vhl-1), a leaf-specific expressed 31-residue cyclotide, has been determined using two-dimensional H-1 NMR spectroscopy. vhl-1 adopts a compact and well defined structure including a distorted triple-stranded β- sheet, a short 310 helical segment and several turns. It is stabilized by three disulfide bonds, which, together with backbone segments, form a cyclic cystine knot motif. The three-disulfide bonds are almost completely buried into the protein core, and the six cysteines contribute only 3.8% to the molecular surface. A pH titration experiment revealed that the folding of vhl-1 shows little pH dependence and allowed the pK(a) of 3.0 for Glu(3) and ∼ 5.0 for Glu(14) to be determined. Met(7) was found to be oxidized in the native form, consistent with the fact that its side chain protrudes into the solvent, occupying 7.5% of the molecular surface. vhl-1 shows anti-HIV activity with an EC50 value of 0.87 μ m.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A large number of macrocyclic miniproteins with diverse biological activities have been isolated from the Rubiaceae, Violaceae, and Cucurbitaceae plant families in recent years. Here we report the three-dimensional structure determined using H-1 NMR spectroscopy and demonstrate potent insecticidal activity for one of these peptides, kalata B2. This peptide is one of the major components of an extract from the leaves of the plant Oldenlandia affinis. The structure consists of a distorted triple-stranded beta-sheet and a cystine knot arrangement of the disulfide bonds and is similar to those described for other members of the cyclotide family. The unique cyclic and knotted nature of these molecules makes them a fascinating example of topologically complex proteins. Examination of the sequences reveals that they can be separated into two subfamilies, one of which contains a larger number of positively charged residues and has a bracelet-like circularization of the backbone. The second subfamily contains a backbone twist due to a cis-peptidyl-proline bond and may conceptually be regarded as a molecular Mobius strip. Kalata B2 is the second putative member of the Mobius cyclotide family to be structurally characterized and has a cis-peptidyl-proline bond, thus validating the suggested name for this subfamily of cyclotides. The observation that kalata B2 inhibits the growth and development of Helicoverpa armigera larvae suggests a role for the cyclotides in plant defense. A comparison of the sequences and structures of kalata B1 and B2 provides insight into the biological activity of these peptides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two mimics of the intermediate in the reaction catalyzed by ketol-acid reductoisomerase (KARI) were synthesized. Their structures were established on the basis of elemental analyses, IR, H-1 NMR and GC/mass detector. The crystal structure of compound 2 was found to be a substituted dioxane, formed by the condensation of two molecules. The two compounds showed some herbicidal activity on the basis of tests using rape root and barnyard grass growth inhibition. However, the herbicidal effect was weaker in greenhouse tests. (c) 2004 Society of Chemical Industry.