921 resultados para SINGLE-NUCLEOTIDE POLYMORPHISMS
Resumo:
Linkage disequilibrium (LD) is defined as the nonrandom association of alleles at two or more loci in a population and may be a useful tool in a diverse array of applications including disease gene mapping, elucidating the demographic history of populations, and testing hypotheses of human evolution. However, the successful application of LD-based approaches to pertinent genetic questions is hampered by a lack of understanding about the forces that mediate the genome-wide distribution of LD within and between human populations. Delineating the genomic patterns of LD is a complex task that will require interdisciplinary research that transcends traditional scientific boundaries. The research presented in this dissertation is predicated upon the need for interdisciplinary studies and both theoretical and experimental projects were pursued. In the theoretical studies, I have investigated the effect of genotyping errors and SNP identification strategies on estimates of LD. The primary importance of these two chapters is that they provide important insights and guidance for the design of future empirical LD studies. Furthermore, I analyzed the allele frequency distribution of 26,530 single nucleotide polymorphisms (SNPs) in three populations and generated the first-generation natural selection map of the human genome, which will be an important resource for explaining and understanding genomic patterns of LD. Finally, in the experimental study, I describe a novel and simple, low-cost, and high-throughput SNP genotyping method. The theoretical analyses and experimental tools developed in this dissertation will facilitate a more complete understanding of patterns of LD in human populations. ^
Resumo:
ABSTRACT : BACKGROUND : Diets that restrict carbohydrate (CHO) have proven to be a successful dietary treatment of obesity for many people, but the degree of weight loss varies across individuals. The extent to which genetic factors associate with the magnitude of weight loss induced by CHO restriction is unknown. We examined associations among polymorphisms in candidate genes and weight loss in order to understand the physiological factors influencing body weight responses to CHO restriction. METHODS : We screened for genetic associations with weight loss in 86 healthy adults who were instructed to restrict CHO to a level that induced a small level of ketosis (CHO ~10% of total energy). A total of 27 single nucleotide polymorphisms (SNPs) were selected from 15 candidate genes involved in fat digestion/metabolism, intracellular glucose metabolism, lipoprotein remodeling, and appetite regulation. Multiple linear regression was used to rank the SNPs according to probability of association, and the most significant associations were analyzed in greater detail. RESULTS : Mean weight loss was 6.4 kg. SNPs in the gastric lipase (LIPF), hepatic glycogen synthase (GYS2), cholesteryl ester transfer protein (CETP) and galanin (GAL) genes were significantly associated with weight loss. CONCLUSION : A strong association between weight loss induced by dietary CHO restriction and variability in genes regulating fat digestion, hepatic glucose metabolism, intravascular lipoprotein remodeling, and appetite were detected. These discoveries could provide clues to important physiologic adaptations underlying the body mass response to CHO restriction.
Resumo:
Linkage and association studies are major analytical tools to search for susceptibility genes for complex diseases. With the availability of large collection of single nucleotide polymorphisms (SNPs) and the rapid progresses for high throughput genotyping technologies, together with the ambitious goals of the International HapMap Project, genetic markers covering the whole genome will be available for genome-wide linkage and association studies. In order not to inflate the type I error rate in performing genome-wide linkage and association studies, multiple adjustment for the significant level for each independent linkage and/or association test is required, and this has led to the suggestion of genome-wide significant cut-off as low as 5 × 10 −7. Almost no linkage and/or association study can meet such a stringent threshold by the standard statistical methods. Developing new statistics with high power is urgently needed to tackle this problem. This dissertation proposes and explores a class of novel test statistics that can be used in both population-based and family-based genetic data by employing a completely new strategy, which uses nonlinear transformation of the sample means to construct test statistics for linkage and association studies. Extensive simulation studies are used to illustrate the properties of the nonlinear test statistics. Power calculations are performed using both analytical and empirical methods. Finally, real data sets are analyzed with the nonlinear test statistics. Results show that the nonlinear test statistics have correct type I error rates, and most of the studied nonlinear test statistics have higher power than the standard chi-square test. This dissertation introduces a new idea to design novel test statistics with high power and might open new ways to mapping susceptibility genes for complex diseases. ^
Resumo:
Colorectal cancer is the forth most common diagnosed cancer in the United States. Every year about a hundred forty-seven thousand people will be diagnosed with colorectal cancer and fifty-six thousand people lose their lives due to this disease. Most of the hereditary nonpolyposis colorectal cancer (HNPCC) and 12% of the sporadic colorectal cancer show microsatellite instability. Colorectal cancer is a multistep progressive disease. It starts from a mutation in a normal colorectal cell and grows into a clone of cells that further accumulates mutations and finally develops into a malignant tumor. In terms of molecular evolution, the process of colorectal tumor progression represents the acquisition of sequential mutations. ^ Clinical studies use biomarkers such as microsatellite or single nucleotide polymorphisms (SNPs) to study mutation frequencies in colorectal cancer. Microsatellite data obtained from single genome equivalent PCR or small pool PCR can be used to infer tumor progression. Since tumor progression is similar to population evolution, we used an approach known as coalescent, which is well established in population genetics, to analyze this type of data. Coalescent theory has been known to infer the sample's evolutionary path through the analysis of microsatellite data. ^ The simulation results indicate that the constant population size pattern and the rapid tumor growth pattern have different genetic polymorphic patterns. The simulation results were compared with experimental data collected from HNPCC patients. The preliminary result shows the mutation rate in 6 HNPCC patients range from 0.001 to 0.01. The patients' polymorphic patterns are similar to the constant population size pattern which implies the tumor progression is through multilineage persistence instead of clonal sequential evolution. The results should be further verified using a larger dataset. ^
Resumo:
Prostate cancer (PrCa) is a leading cause of morbidity and mortality, yet the etiology remains uncertain. Meta-analyses show that PrCa risk is reduced by 16% in men with type 2 diabetes (T2D), but the mechanism is unknown. Recent genome-wide association studies and meta-analyses have found single nucleotide polymorphisms (SNPs) that consistently predict T2D risk. We evaluated associations of incident PrCa with 14 T2D SNPs in the Atherosclerosis Risk in Communities (ARIC) study. From 1987-2000, there were 397 incident PrCa cases ascertained from state or local cancer registries among 6,642 men (1,560 blacks and 5,082 whites) aged 45-64 years at baseline. Genotypes were determined by TaqMan assay. Cox proportional hazards models were used to assess the association between PrCa and increasing number of T2D risk-raising alleles for individual SNPs and for genetic risk scores (GRS) comprised of the number of T2D risk-raising alleles across SNPs. Two-way gene-gene interactions were evaluated with likelihood ratio tests. Using additive genetic models, the T2D risk-raising allele was associated with significantly reduced risk of PrCa for IGF2BP2 rs4402960 (hazard ratio [HR]=0.79; P=0.07 among blacks only), SLC2A2 rs5400 (race-adjusted HR=0.85; P=0.05) and UCP2 rs660339 (race-adjusted HR=0.84; P=0.02), but significantly increased risk of PrCa for CAPN10 rs3792267 (race-adjusted HR=1.20; P=0.05). No other SNPs were associated with PrCa using an additive genetic model. However, at least one copy of the T2D risk-raising allele for TCF7L2 rs7903146 was associated with reduced PrCa risk using a dominant genetic model (race-adjusted HR=0.79; P=0.03). These results imply that the T2D-PrCa association may be partly due to shared genetic variation, but these results should be verified since multiple tests were performed. When the combined, additive effects of these SNPs were tested using a GRS, there was nearly a 10% reduction in risk of PrCa per T2D risk-raising allele (race-adjusted HR=0.92; P=0.02). SNPs in IGF2BP2, KCNJ11 and SLC2A2 were also involved in multiple synergistic gene-gene interactions on a multiplicative scale. In conclusion, it appears that the T2D-PrCa association may be due, in part, to common genetic variation. Further knowledge of T2D gene-PrCa mechanisms may improve understanding of PrCa etiology and may inform PrCa prevention and treatment.^
Resumo:
To identify genetic susceptibility loci for severe diabetic retinopathy, 286 Mexican-Americans with type 2 diabetes from Starr County, Texas completed detailed physical and ophthalmologic examinations including fundus photography for diabetic retinopathy grading. 103 individuals with moderate-to-severe non-proliferative diabetic retinopathy or proliferative diabetic retinopathy were defined as cases for this study. DNA samples extracted from study subjects were genotyped using the Affymetrix GeneChip® Human Mapping 100K Set, which includes 116,204 single nucleotide polymorphisms (SNPs) across the whole genome. Single-marker allelic tests and 2- to 8-SNP sliding-window Haplotype Trend Regression implemented in HelixTreeTM were first performed with these direct genotypes to identify genes/regions contributing to the risk of severe diabetic retinopathy. An additional 1,885,781 HapMap Phase II SNPs were imputed from the direct genotypes to expand the genomic coverage for a more detailed exploration of genetic susceptibility to diabetic retinopathy. The average estimated allelic dosage and imputed genotypes with the highest posterior probabilities were subsequently analyzed for associations using logistic regression and Fisher's Exact allelic tests, respectively. To move beyond these SNP-based approaches, 104,572 directly genotyped and 333,375 well-imputed SNPs were used to construct genetic distance matrices based on 262 retinopathy candidate genes and their 112 related biological pathways. Multivariate distance matrix regression was then used to test hypotheses with genes and pathways as the units of inference in the context of susceptibility to diabetic retinopathy. This study provides a framework for genome-wide association analyses, and implicated several genes involved in the regulation of oxidative stress, inflammatory processes, histidine metabolism, and pancreatic cancer pathways associated with severe diabetic retinopathy. Many of these loci have not previously been implicated in either diabetic retinopathy or diabetes. In summary, CDC73, IL12RB2, and SULF1 had the best evidence as candidates to influence diabetic retinopathy, possibly through novel biological mechanisms related to VEGF-mediated signaling pathway or inflammatory processes. While this study uncovered some genes for diabetic retinopathy, a comprehensive picture of the genetic architecture of diabetic retinopathy has not yet been achieved. Once fully understood, the genetics and biology of diabetic retinopathy will contribute to better strategies for diagnosis, treatment and prevention of this disease.^
Resumo:
Triglyceride levels are a component of plasma lipids that are thought to be an important risk factor for coronary heart disease and are influenced by genetic and environmental factors, such as single nucleotide polymorphisms (SNPs), alcohol intake, and smoking. This study used longitudinal data from the Bogalusa Heart Study, a biracial community-based survey of cardiovascular disease risk factors. A sample of 1191 individuals, 4 to 38 years of age, was measured multiple times from 1973 to 2000. The study sample consisted of 730 white and 461 African American participants. Individual growth models were developed in order to assess gene-environment interactions affecting plasma triglycerides over time. After testing for inclusion of significant covariates and interactions, final models, each accounting for the effects of a different SNP, were assessed for fit and normality. After adjustment for all other covariates and interactions, LIPC -514C/T was found to interact with age3, age2, and age and a non-significant interaction of CETP -971G/A genotype with smoking status was found (p = 0.0812). Ever-smokers had higher triglyceride levels than never smokers, but persons heterozygous at this locus, about half of both races, had higher triglyceride levels after smoking cessation compared to current smokers. Since tobacco products increase free fatty acids circulating in the bloodstream, smoking cessation programs have the potential to ultimately reduce triglyceride levels for many persons. However, due to the effect of smoking cessation on the triglyceride levels of CETP -971G/A heterozygotes, the need for smoking prevention programs is also demonstrated. Both smoking cessation and prevention programs would have a great public health impact on minimizing triglyceride levels and ultimately reducing heart disease. ^
Resumo:
Numerous studies have been carried out to try to better understand the genetic predisposition for cardiovascular disease. Although it is widely believed that multifactorial diseases such as cardiovascular disease is the result from effects of many genes which working alone or interact with other genes, most genetic studies have been focused on identifying of cardiovascular disease susceptibility genes and usually ignore the effects of gene-gene interactions in the analysis. The current study applies a novel linkage disequilibrium based statistic for testing interactions between two linked loci using data from a genome-wide study of cardiovascular disease. A total of 53,394 single nucleotide polymorphisms (SNPs) are tested for pair-wise interactions, and 8,644 interactions are found to be significant with p-values less than 3.5×10-11. Results indicate that known cardiovascular disease susceptibility genes tend not to have many significantly interactions. One SNP in the CACNG1 (calcium channel, voltage-dependent, gamma subunit 1) gene and one SNP in the IL3RA (interleukin 3 receptor, alpha) gene are found to have the most significant pair-wise interactions. Findings from the current study should be replicated in other independent cohort to eliminate potential false positive results.^
Resumo:
SNP genotyping arrays have been developed to characterize single-nucleotide polymorphisms (SNPs) and DNA copy number variations (CNVs). The quality of the inferences about copy number can be affected by many factors including batch effects, DNA sample preparation, signal processing, and analytical approach. Nonparametric and model-based statistical algorithms have been developed to detect CNVs from SNP genotyping data. However, these algorithms lack specificity to detect small CNVs due to the high false positive rate when calling CNVs based on the intensity values. Association tests based on detected CNVs therefore lack power even if the CNVs affecting disease risk are common. In this research, by combining an existing Hidden Markov Model (HMM) and the logistic regression model, a new genome-wide logistic regression algorithm was developed to detect CNV associations with diseases. We showed that the new algorithm is more sensitive and can be more powerful in detecting CNV associations with diseases than an existing popular algorithm, especially when the CNV association signal is weak and a limited number of SNPs are located in the CNV.^
Resumo:
Genome-Wide Association Study analytical (GWAS) methods were applied in a large biracial sample of individuals to investigate variation across the genome for its association with a surrogate low-density lipoprotein (LDL) particle size phenotype, the ratio of LDL-cholesterol level over ApoB level. Genotyping was performed on the Affymetrix 6.0 GeneChip with approximately one million single nucleotide polymorphisms (SNPs). The ratio of LDL cholesterol to ApoB was calculated, and association tests used multivariable linear regression analysis with an additive genetic model after adjustment for the covariates sex, age and BMI. Association tests were performed separately in African Americans and Caucasians. There were 9,562 qualified individuals in the Caucasian group and 3,015 qualified individuals in the African American group. Overall, in Caucasians two statistically significant loci were identified as being associated with the ratio of LDL-cholesterol over ApoB: rs10488699 (p<5 x10-8, 11q23.3 near BUD13) and the SNP rs964184 (p<5 x10-8 11q23.3 near ZNF259). We also found rs12286037 ((p<4x10-7) (11q23.3) near APOA5/A4/C3/A1 with suggestive associate in the Caucasian sample. In exploratory analyses, a difference in the pattern of association between individuals taking and not taking LDL-cholesterol lowering medications was observed. Individuals who were not taking medications had smaller p-value than those taking medication. In the African-American group, there were no significant (p<5x10-8) or suggestive associations (p<4x10-7) with the ratio of LDL-cholesterol over ApoB after adjusting for age, BMI, and sex and comparing individuals with and without LDL-cholesterol lowering medication. Conclusions: There were significant and suggestive associations between SNP genotype and the ratio of LDL-cholesterol to ApoB in Caucasians, but these associations may be modified by medication treatment.^
Resumo:
Background. The mTOR pathway is commonly altered in human tumors and promotes cell survival and proliferation. Preliminary evidence suggests this pathway's involvement in chemoresistance to platinum and taxanes, first line therapy for epithelial ovarian cancer. A pathway-based approach was used to identify individual germline single nucleotide polymorphisms (SNPs) and cumulative effects of multiple genetic variants in mTOR pathway genes and their association with clinical outcome in women with ovarian cancer. ^ Methods. The case-series was restricted to 319 non-Hispanic white women with high grade ovarian cancer treated with surgery and platinum-based chemotherapy. 135 SNPs in 20 representative genes in the mTOR pathway were genotyped. Hazard ratios (HRs) for death and Odds ratios (ORs) for failure to respond to primary therapy were estimated for each SNP using the multivariate Cox proportional hazards model and multivariate logistic regression model, respectively, while adjusting for age, stage, histology and treatment sequence. A survival tree analysis of SNPs with a statistically significant association (p<0.05) was performed to identify higher order gene-gene interactions and their association with overall survival. ^ Results. There was no statistically significant difference in survival by tumor histology or treatment regimen. The median survival for the cohort was 48.3 months. Seven SNPs were significantly associated with decreased survival. Compared to those with no unfavorable genotypes, the HR for death increased significantly with the increasing number of unfavorable genotypes and women in the highest risk category had HR of 4.06 (95% CI 2.29–7.21). The survival tree analysis also identified patients with different survival patterns based on their genetic profiles. 13 SNPs on five different genes were found to be significantly associated with a treatment response, defined as no evidence of disease after completion of primary therapy. Rare homozygous genotype of SNP rs6973428 showed a 5.5-fold increased risk compared to the wild type carrying genotypes. In the cumulative effect analysis, the highest risk group (individuals with ≥8 unfavorable genotypes) was significantly less likely to respond to chemotherapy (OR=8.40, 95% CI 3.10–22.75) compared to the low risk group (≤4 unfavorable genotypes). ^ Conclusions. A pathway-based approach can demonstrate cumulative effects of multiple genetic variants on clinical response to chemotherapy and survival. Therapy targeting the mTOR pathway may modify outcome in select patients.^
Resumo:
Two molecular epidemiological studies were conducted to examine associations between genetic variation and risk of squamous cell carcinoma of the head and neck (SCCHN). In the first study, we hypothesized that genetic variation in p53 response elements (REs) may play roles in the etiology of SCCHN. We selected and genotyped five polymorphic p53 REs as well as a most frequently studied p53 codon 72 (Arg72Pro, rs1042522) polymorphism in 1,100 non-Hispanic White SCCHN patients and 1,122 age-and sex-matched cancer-free controls recruited at The University of Texas M. D. Anderson Cancer Center. In multivariate logistic regression analysis with adjustment for age, sex, smoking and drinking status, marital status and education level, we observed that the EOMES rs3806624 CC genotype had a significant effect of protection against SCCHN risk (adjusted odds ratio= 0.79, 95% confidence interval =0.64–0.98), compared with the -838TT+CT genotypes. Moreover, a significantly increased risk associated with the combined genotypes of p53 codon 72CC and EOMES -838TT+CT was observed, especially in the subgroup of non-oropharyneal cancer patients. The values of false-positive report probability were also calculated for significant findings. In the second study, we assessed the association between SCCHN risk and four potential regulatory single nucleotide polymorphisms (SNPs) of DEC1 (deleted in esophageal cancer 1) gene, a candidate tumor suppressor gene for esophageal cancer. After adjustment for age, sex, and smoking and drinking status, the variant -606CC (i.e., -249CC) homozygotes had a significantly reduced SCCHN risk (adjusted odds ratio = 0.71, 95% confidence interval = 0.52–0.99), compared with the -606TT homozygotes. Stratification analyses showed that a reduced risk associated with the -606CC genotype was more pronounced in subgroups of non-smokers, non-drinkers, younger subjects (defined as ≤ 57 years), carriers of TP53 Arg/Arg (rs1042522) genotype, patients with oropharyngeal cancer or late-stage SCCHN. Further in silico analysis revealed that the -249 T-to-C change led to a gain of a transcription factor binding site. Additional functional analysis showed that the -249T-to-C change significantly enhanced transcriptional activity of the DEC1 promoter and the DNA-protein binding activity. We conclude that the DEC1 promoter -249 T>C (rs2012775) polymorphism is functional, modulating susceptibility to SCCHN among non-Hispanic Whites. Additional large-scale, preferably population-based studies are needed to validate our findings.^
Resumo:
Children who experience early pubertal development have an increased risk of developing cancer (breast, ovarian, and testicular), osteoporosis, insulin resistance, and obesity as adults. Early pubertal development has been associated with depression, aggressiveness, and increased sexual prowess. Possible explanations for the decline in age of pubertal onset include genetics, exposure to environmental toxins, better nutrition, and a reduction in childhood infections. In this study we (1) evaluated the association between 415 single nucleotide polymorphisms (SNPs) from hormonal pathways and early puberty, defined as menarche prior to age 12 in females and Tanner Stage 2 development prior to age 11 in males, and (2) measured endocrine hormone trajectories (estradiol, testosterone, and DHEAS) in relation to age, race, and Tanner Stage in a cohort of children from Project HeartBeat! At the end of the 4-year study, 193 females had onset of menarche and 121 males had pubertal staging at age 11. African American females had a younger mean age at menarche than Non-Hispanic White females. African American females and males had a lower mean age at each pubertal stage (1-5) than Non-Hispanic White females and males. African American females had higher mean BMI measures at each pubertal stage than Non-Hispanic White females. Of the 415 SNPs evaluated in females, 22 SNPs were associated with early menarche, when adjusted for race ( p<0.05), but none remained significant after adjusting for multiple testing by False Discovery Rate (p<0.00017). In males, 17 SNPs were associated with early pubertal development when adjusted for race (p<0.05), but none remained significant when adjusted for multiple testing (p<0.00017). ^ There were 4955 hormone measurements taken during the 4-year study period from 632 African American and Non-Hispanic White males and females. On average, African American females started and ended the pubertal process at a younger age than Non-Hispanic White females. The mean age of Tanner Stage 2 breast development in African American and Non-Hispanic White females was 9.7 (S.D.=0.8) and 10.2 (S.D.=1.1) years, respectively. There was a significant difference by race in mean age for each pubertal stage, except Tanner Stage 1 for pubic hair development. Both Estradiol and DHEAS levels in females varied significantly with age, but not by race. Estradiol and DHEAS levels increased from Tanner Stage 1 to Tanner Stage 5.^ African American males had a lower mean age at each Tanner Stage of development than Non-Hispanic White males. The mean age of Tanner Stage 2 genital development in African American and Non-Hispanic White males was 10.5 (S.D.=1.1) and 10.8 (S.D.=1.1) years, respectively, but this difference was not significant (p=0.11). Testosterone levels varied significantly with age and race. Non-Hispanic White males had higher levels of testosterone than African American males from Tanner Stage 1-4. Testosterone levels increased for both races from Tanner Stage 1 to Tanner Stage 5. Testosterone levels had the steepest increase from ages 11-15 for both races. DHEAS levels in males varied significantly with age, but not by race. DHEAS levels had the steepest increase from ages 14-17. ^ In conclusion, African American males and females experience pubertal onset at a younger age than Non-Hispanic White males and females, but in this study, we could not find a specific gene that explained the observed variation in age of pubertal onset. Future studies with larger study populations may provide a better understanding of the contribution of genes in early pubertal onset.^
Resumo:
Lung cancer is the leading cause of cancer-related mortality in the US. Emerging evidence has shown that host genetic factors can interact with environmental exposures to influence patient susceptibility to the diseases as well as clinical outcomes, such as survival and recurrence. We aimed to identify genetic prognostic markers for non-small cell lung cancer (NSCLC), a major (85%) subtype of lung cancer, and also in other subgroups. With the fast evolution of genotyping technology, genetic association studies have went through candidate gene approach, to pathway-based approach, to the genome wide association study (GWAS). Even in the era of GWAS, pathway-based approach has its own advantages on studying cancer clinical outcomes: it is cost-effective, requiring a smaller sample size than GWAS easier to identify a validation population and explore gene-gene interactions. In the current study, we adopted pathway-based approach focusing on two critical pathways - miRNA and inflammation pathways. MicroRNAs (miRNA) post-transcriptionally regulate around 30% of human genes. Polymorphisms within miRNA processing pathways and binding sites may influence patients’ prognosis through altered gene regulation. Inflammation plays an important role in cancer initiation and progression, and also has shown to impact patients’ clinical outcomes. We first evaluated 240 single nucleotide polymorphisms (SNPs) in miRNA biogenesis genes and predicted binding sites in NSCLC patients to determine associations with clinical outcomes in early-stage (stage I and II) and late-stage (stage III and IV) lung cancer patients, respectively. First, in 535 early-stage patients, after correcting multiple comparisons, FZD4:rs713065 (hazard ratio [HR]:0.46, 95% confidence interval [CI]:0.32-0.65) showed a significant inverse association with survival in early stage surgery-only patients. SP1:rs17695156 (HR:2.22, 95% CI:1.44-3.41) and DROSHA:rs6886834 (HR:6.38, 95% CI:2.49-16.31) conferred increased risk of progression in the all patients and surgery-only populations, respectively. FAS:rs2234978 was significantly associated with improved survival in all patients (HR:0.59, 95% CI:0.44-0.77) and in the surgery plus chemotherapy populations (HR:0.19, 95% CI:0.07-0.46).. Functional genomics analysis demonstrated that this variant creates a miR-651 binding site resulting in altered miRNA regulation of FAS, providing biological plausibility for the observed association. We then analyzed these associations in 598 late-stage patients. After multiple comparison corrections, no SNPs remained significant in the late stage group, while the top SNP NAT1:rs15561 (HR=1.98, 96%CI=1.32-2.94) conferred a significantly increased risk of death in the chemotherapy subgroup. To test the hypothesis that genetic variants in the inflammation-related pathways may be associated with survival in NSCLC patients, we first conducted a three-stage study. In the discovery phase, we investigated a comprehensive panel of 11,930 inflammation-related SNPs in three independent lung cancer populations. A missense SNP (rs2071554) in HLA-DOB was significantly associated with poor survival in the discovery population (HR: 1.46, 95% CI: 1.02-2.09), internal validation population (HR: 1.51, 95% CI: 1.02-2.25), and external validation (HR: 1.52, 95% CI: 1.01-2.29) population. Rs2900420 in KLRK1 was significantly associated with a reduced risk for death in the discovery (HR: 0.76, 95% CI: 0.60-0.96) and internal validation (HR: 0.77, 95% CI: 0.61-0.99) populations, and the association reached borderline significance in the external validation population (HR: 0.80, 95% CI: 0.63-1.02). We also evaluated these inflammation-related SNPs in NSCLC patients in never smokers. Lung cancer in never smokers has been increasingly recognized as distinct disease from that in ever-smokers. A two-stage study was performed using a discovery population from MD Anderson (411 patients) and a validation population from Mayo Clinic (311 patients). Three SNPs (IL17RA:rs879576, BMP8A:rs698141, and STK:rs290229) that were significantly associated with survival were validated (pCD74:rs1056400 and CD38:rs10805347) were borderline significant (p=0.08) in the Mayo Clinic population. In the combined analysis, IL17RA:rs879576 resulted in a 40% reduction in the risk for death (p=4.1 × 10-5 [p=0.61, heterogeneity test]). We also validated a survival tree created in MD Anderson population in the Mayo Clinic population. In conclusion, our results provided strong evidence that genetic variations in specific pathways that examined (miRNA and inflammation pathways) influenced clinical outcomes in NSCLC patients, and with further functional studies, the novel loci have potential to be translated into clinical use.
Resumo:
Introduction. Distant metastasis remains the leading cause of death among prostate cancer patients. Several genetic susceptibility loci associated with Prostate cancer have been identified by the Genome Wide Association Studies (GWAS). To date, few studies have explored the ability of these SNPs to identify metastatic prostate cancer. Based on the identification of genetic variants as predictors of aggressive disease, a case comparison study of prostate cancer patients was designed to explore the association of 96 GWAS single nucleotide polymorphisms (SNPs) with metastatic disease. ^ Method. 1242 histologically confirmed prostate cancer patients, with and without metastatic disease, were enrolled into the study. Data were collected from personal interviews, hospital database and abstraction of medical records. Ninety six SNPs identified from GWAS studies based on their associations with prostate cancer risk were genotyped in the study population. Univariate and multivariate logistic regression analyses were used to explore the relationships of the variants with metastatic prostate cancer in Whites and African American men. ^ Results. Four SNPs showed independent associations with metastatic prostate cancer (rs721048 in EHBP1 (2p15), rs3025039 in VEGF (6p12), rs11228565 in Intergenic(11q13.2) and rs2735839 in KLK3(19q13.33)) in the White population. For SNP rs2735839 in KLK3, genotype GA was 1.71 times as likely to be associated with metastatic prostate cancer diagnosis as genotype AA after adjusting for other significant SNPs and covariates (95% CI, 1.12-2.60; p=0.012). In men of African descent, three SNPs: rs1512268 in NKX3-1(8p21.2), rs12155172 in intergenic (7p15.3) & rs10486567 in JAZF1 (7p15.2) were positively associated with metastatic disease in the multivariate analysis. The strongest SNP was rs1512268 heterozygous genotype AG in NKX3-1(8p21.2) which was associated with 3.97-fold increased risk of metastatic prostate cancer diagnosis (95% CI, 1.69-9.34; p =0.002). ^ Conclusion. Genetic variants associated with metastatic prostate cancer were different in Whites and African American men. Given the high mortality rate recorded in men diagnosed with metastatic prostate tumor, further studies are needed to validate associations and establish their clinical application.^