993 resultados para Probabilistic Algorithms
Resumo:
Credal networks are graph-based statistical models whose parameters take values in a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The computational complexity of inferences on such models depends on the irrelevance/independence concept adopted. In this paper, we study inferential complexity under the concepts of epistemic irrelevance and strong independence. We show that inferences under strong independence are NP-hard even in trees with binary variables except for a single ternary one. We prove that under epistemic irrelevance the polynomial-time complexity of inferences in credal trees is not likely to extend to more general models (e.g., singly connected topologies). These results clearly distinguish networks that admit efficient inferences and those where inferences are most likely hard, and settle several open questions regarding their computational complexity. We show that these results remain valid even if we disallow the use of zero probabilities. We also show that the computation of bounds on the probability of the future state in a hidden Markov model is the same whether we assume epistemic irrelevance or strong independence, and we prove an analogous result for inference in Naive Bayes structures. These inferential equivalences are important for practitioners, as hidden Markov models and Naive Bayes networks are used in real applications of imprecise probability.
Resumo:
Kuznetsov independence of variables X and Y means that, for any pair of bounded functions f(X) and g(Y), E[f(X)g(Y)]=E[f(X)] *times* E[g(Y)], where E[.] denotes interval-valued expectation and *times* denotes interval multiplication. We present properties of Kuznetsov independence for several variables, and connect it with other concepts of independence in the literature; in particular we show that strong extensions are always included in sets of probability distributions whose lower and upper expectations satisfy Kuznetsov independence. We introduce an algorithm that computes lower expectations subject to judgments of Kuznetsov independence by mixing column generation techniques with nonlinear programming. Finally, we define a concept of conditional Kuznetsov independence, and study its graphoid properties.
Resumo:
Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that are behind the Bayesian networks. This paper explores the computational complexity of semi-qualitative probabilistic networks, and takes the polytree-shaped networks as its main target. We show that the inference problem is coNP-Complete for binary polytrees with multiple observed nodes. We also show that inferences can be performed in linear time if there is a single observed node, which is a relevant practical case. Because our proof is constructive, we obtain an efficient linear time algorithm for SQPNs under such assumptions. To the best of our knowledge, this is the first exact polynomial-time algorithm for SQPNs. Together these results provide a clear picture of the inferential complexity in polytree-shaped SQPNs.
Resumo:
This paper explores the application of semi-qualitative probabilistic networks (SQPNs) that combine numeric and qualitative information to computer vision problems. Our version of SQPN allows qualitative influences and imprecise probability measures using intervals. We describe an Imprecise Dirichlet model for parameter learning and an iterative algorithm for evaluating posterior probabilities, maximum a posteriori and most probable explanations. Experiments on facial expression recognition and image segmentation problems are performed using real data.
Resumo:
We examine the representation of judgements of stochastic independence in probabilistic logics. We focus on a relational logic where (i) judgements of stochastic independence are encoded by directed acyclic graphs, and (ii) probabilistic assessments are flexible in the sense that they are not required to specify a single probability measure. We discuss issues of knowledge representation and inference that arise from our particular combination of graphs, stochastic independence, logical formulas and probabilistic assessments.
Resumo:
This paper investigates the computation of lower/upper expectations that must cohere with a collection of probabilistic assessments and a collection of judgements of epistemic independence. New algorithms, based on multilinear programming, are presented, both for independence among events and among random variables. Separation properties of graphical models are also investigated.
Resumo:
Credal networks provide a scheme for dealing with imprecise probabilistic models. The inference algorithms often used in credal networks compute the interval of the posterior probability of an event of interest given evidence of the specific kind -- evidence that describe the current state of a set of variables. These algorithms do not perform evidential reasoning in case of the evidence must be processed according to the conditioning rule proposed by RC Jeffrey. This paper describes a procedure to integrate evidence with Jeffrey's rule when performing inferences with credal nets.