Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol


Autoria(s): Klink, Thorsten; Obmann, Verena Carola; Heverhagen, Johannes; Stork, Alexander; Adam, Gerhard; Begemann, Philipp
Data(s)

01/09/2014

Resumo

OBJECTIVES In this phantom CT study, we investigated whether images reconstructed using filtered back projection (FBP) and iterative reconstruction (IR) with reduced tube voltage and current have equivalent quality. We evaluated the effects of different acquisition and reconstruction parameter settings on image quality and radiation doses. Additionally, patient CT studies were evaluated to confirm our phantom results. METHODS Helical and axial 256 multi-slice computed tomography scans of the phantom (Catphan(®)) were performed with varying tube voltages (80-140kV) and currents (30-200mAs). 198 phantom data sets were reconstructed applying FBP and IR with increasing iterations, and soft and sharp kernels. Further, 25 chest and abdomen CT scans, performed with high and low exposure per patient, were reconstructed with IR and FBP. Two independent observers evaluated image quality and radiation doses of both phantom and patient scans. RESULTS In phantom scans, noise reduction was significantly improved using IR with increasing iterations, independent from tissue, scan-mode, tube-voltage, current, and kernel. IR did not affect high-contrast resolution. Low-contrast resolution was also not negatively affected, but improved in scans with doses <5mGy, although object detectability generally decreased with the lowering of exposure. At comparable image quality levels, CTDIvol was reduced by 26-50% using IR. In patients, applying IR vs. FBP resulted in good to excellent image quality, while tube voltage and current settings could be significantly decreased. CONCLUSIONS Our phantom experiments demonstrate that image quality levels of FBP reconstructions can also be achieved at lower tube voltages and tube currents when applying IR. Our findings could be confirmed in patients revealing the potential of IR to significantly reduce CT radiation doses.

Formato

application/pdf

Identificador

http://boris.unibe.ch/66047/1/1-s2.0-S0720048X14002915-main.pdf

Klink, Thorsten; Obmann, Verena Carola; Heverhagen, Johannes; Stork, Alexander; Adam, Gerhard; Begemann, Philipp (2014). Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol. European journal of radiology, 83(9), pp. 1645-1654. Elsevier 10.1016/j.ejrad.2014.05.033 <http://dx.doi.org/10.1016/j.ejrad.2014.05.033>

doi:10.7892/boris.66047

info:doi:10.1016/j.ejrad.2014.05.033

info:pmid:25037931

urn:issn:0720-048X

Idioma(s)

eng

Publicador

Elsevier

Relação

http://boris.unibe.ch/66047/

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Klink, Thorsten; Obmann, Verena Carola; Heverhagen, Johannes; Stork, Alexander; Adam, Gerhard; Begemann, Philipp (2014). Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol. European journal of radiology, 83(9), pp. 1645-1654. Elsevier 10.1016/j.ejrad.2014.05.033 <http://dx.doi.org/10.1016/j.ejrad.2014.05.033>

Palavras-Chave #610 Medicine & health
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed