973 resultados para Pelvic Radiation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Background: DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Methods: Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results: Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. Conclusions: An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main problem connected to cone beam computed tomography (CT) systems for industrial applications employing 450 kV X-ray tubes is the high amount of scattered radiation which is added to the primary radiation (signal). This stray radiation leads to a significant degradation of the image quality. A better understanding of the scattering and methods to reduce its effects are therefore necessary to improve the image quality. Several studies have been carried out in the medical field at lower energies, whereas studies in industrial CT, especially for energies up to 450 kV, are lacking. Moreover, the studies reported in literature do not consider the scattered radiation generated by the CT system structure and the walls of the X-ray room (environmental scatter). In order to investigate the scattering on CT projections a GEANT4-based Monte Carlo (MC) model was developed. The model, which has been validated against experimental data, has enabled the calculation of the scattering including the environmental scatter, the optimization of an anti-scatter grid suitable for the CT system, and the optimization of the hardware components of the CT system. The investigation of multiple scattering in the CT projections showed that its contribution is 2.3 times the one of primary radiation for certain objects. The results of the environmental scatter showed that it is the major component of the scattering for aluminum box objects of front size 70 x 70 mm2 and that it strongly depends on the thickness of the object and therefore on the projection. For that reason, its correction is one of the key factors for achieving high quality images. The anti-scatter grid optimized by means of the developed MC model was found to reduce the scatter-toprimary ratio in the reconstructed images by 20 %. The object and environmental scatter calculated by means of the simulation were used to improve the scatter correction algorithm which could be patented by Empa. The results showed that the cupping effect in the corrected image is strongly reduced. The developed CT simulation is a powerful tool to optimize the design of the CT system and to evaluate the contribution of the scattered radiation to the image. Besides, it has offered a basis for a new scatter correction approach by which it has been possible to achieve images with the same spatial resolution as state-of-the-art well collimated fan-beam CT with a gain in the reconstruction time of a factor 10. This result has a high economic impact in non-destructive testing and evaluation, and reverse engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]A numerical model for the evaluation of solar radiation in different locations is presented. The solar radiation model is implemented taking into account the terrain surface using two-dimensional adaptive meshes of triangles that are constructed using a refinement/derefinement procedure in accordance with the variations of terrain surface and albedo. The selected methodology defines the terrain characteristics with a minimum number of points so that the computational cost is reduced for a given accuracy. The model can be used in atmospheric sciences as well as in other fields such as electrical engineering, since it allows the user to find the optimal location for maximum power generation in photovoltaic or solar thermal power plants...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]A solar radiation numerical model is presented. It is intented to be useful for different purposes like the evaluation of the suitability of possible locations for solar power stations. This model allows the user to evaluate the radiation values in any location easily, and estimate the solar power generation taking into account not only the radiation level, but also the terrain surface conditions considering the cast shadows. The solar radiation model is implemented taking into account the terrain surface using 2-D adaptive meshes of triangles, which are constructed using a refinement/derefinement procedure in accordance with the variations of terrain surface and albedo...

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]A predictive solar radiation numerical model is presented. Starting from the works of, a solar radiation numerical model is developed considering the terrain surface through 2-D adaptive meshes of triangles which are constructed using a refinement/derefinement procedure in accordance with the variations of terrain surface and albedo. The effect of shadows is considered in each time step. Solar radiation is first computed for clear-sky (CS) conditions and then, real-sky values are computed daily in terms of the CS index computed using all the observational data which are available for each day at several points of the studied zone…

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programa de doctorado: Oceanografía (Bienio 2006-2008). Universidad de Las Palmas de Gran Canaria, Departamento de Biología y Institut de Ciéncies del Mar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-of-flight photoemission spectromicroscopy was used to measure and compare the two-photon photoemission (2PPE) spectra of Cu and Ag nanoparticles with linear dimensions ranging between 40 nm and several 100 nm, with those of the corresponding homogeneous surfaces. 2PPE was induced employing femtosecond laser radiation from a frequency-doubled Ti:sapphire laser in the spectral range between 375 nm and 425 nm with a pulse width of 200 fs and a repetition rate of 80 MHz. The use of a pulsed radiation source allowed us to use a high-resolution photoemission electron microscope as imaging time-of-flight spectrometer, and thus to obtain spectroscopic information about the laterally resolved electron signal. Ag nanoparticle films have been deposited on Si(111) by electron-beam evaporation, a technique leading to hemispherically-shaped Ag clusters. Isolated Cu nanoparticles have been generated by prolonged heating of a polycrystalline Cu sample. If compared to the spectra of the corresponding homogeneous surfaces, the Cu and Ag nanoparticle spectra are characterized by a strongly enhanced total 2PPE yield (enhancement factor up to 70), by a shift (about 0.1 eV) of the Fermi level onset towards lower final state energies, by a reduction of the work function (typically by 0.2 eV) and by a much steeper increase of the 2PPE yield towards lower final state energies. The shift of the Fermi level onset in the nanoparticle spectra has been explained by a positive unit charge (localized photohole) residing on the particle during the time-scale relevant for the 2PPE process (few femtoseconds). The total 2PPE yield enhancement and the different overall shape of the spectra have been explained by considering that the laser frequency was close to the localized surface plasmon resonance of the Cu and Ag nanoparticles. The synchronous oscillations induced by the laser in the metal electrons enhance the near-zone (NZ) field, defined as the linear superposition of the laser field and the field produced in the vicinity of the particles by the forced charge oscillations. From the present measurements it is clear that the NZ field behavior is responsible for the 2PPE enhancement and affects the 2PPE spatial and energy distribution and its dynamics. In particular, its strong spatial dependence allows indirect transitions through real intermediate states to take place in the metal clusters. Such transitions are forbidden by momentum conservation arguments and are thus experimentally much less probable on homogeneous surfaces. Further, we investigated specially tailored moon-shaped small metal nanostructures, whose NZ field was theoretically predicted, and compared the calculation with the laterally resolved 2PPE signal. We could show that the 2PPE signal gives a clear fingerprint of the theoretically predicted spatial dependence of the NZ field. This potential of our method is highly attractive in the novel field of plasmonics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Plasma Focus is a device designed to generate a plasma sheet between two coaxial electrodes by means of a high voltage difference. The plasma is then driven to collapse into a “pinch”, where thermonuclear conditions prevail. During the “pinch phase” charged particles are emitted, with two main components: an ion beam peaked forward and an electron beam directed backward. The electron beam emitted backward by Plasma Focus devices is being investigated as a radiation source for medical applications, using it to produce x-rays by interaction with appropriate targets (through bremsstrahlung and characteristic emission). A dedicated Plasma Focus device, named PFMA-3 (Plasma Focus for Medical Applications number 3), has been designed, put in operation and tested by the research groups of the Universities of Bologna and Ferrara. The very high dose rate (several gray per discharge, in less than 1 µs) is a peculiarity of this device that has to be investigated, as it might modify the relative biological effectiveness (RBE). Aim of this Ph.D. project was to investigate the main physical properties of the low-energy x-ray beams produced by a Plasma Focus device and their potential medical applications to IORT treatments. It was necessary to develop the optimal geometrical configuration; to evaluate the x-rays produced and their dose deposited; to estimate the energy electron spectrum produced in the “pinch phase”; to study an optimal target for the conversion of the x-rays; to conduct simulations to study the physics involved; and in order to evaluate the radio-biological features of the beam, cell holders had to be developed for both irradiations and cell growth conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular response to γ-rays is mediated by ATM-p53 axis. When p53 is phosphorylated, it can transactivate several genes to induce permanent cell cycle arrest (senescence) or apoptosis. Epithelial and mesenchymal cells are more resistant to radiation-induced apoptosis and respond mainly by activating senescence. Hence, tumor cells in a senescent state might remain as “dormant” malignant in fact through disruption of p53 function, cells may overcome growth arrest. Oncocytic features were acquired in the recurring neoplasia after radiation therapy in patient with colonrectal cancer. Oncocytic tumors are characterized by aberrant biogenesis and are mainly non-aggressive neoplasms. Their low proliferation degree can be explained by chronic destabilization of HIF1α, which presides to adaptation to hypoxia and also plays a pivotal role in hypoxia-related radio-resistance. The aim of the present thesis was to verify whether mitochondrial biogenesis can be induced following radiation treatment, in relation of HIF1α status and whether is predictive of a senescence response. In this study was demonstrate that mitochondrial biogenesis parameters like mitochondrial DNA copy number could be used for the prediction of hypoxic status of tissue after radiation treatment. γ-rays induce an increase of mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence. Mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a MDM2-mediated HIF1α degradation, leading to the release of PGC-1β inhibition by HIF1α. On the other hand, this protein blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally in vivo, post-radiotherapy mtDNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of senescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La radioterapia guidata da immagini (IGRT), grazie alle ripetute verifiche della posizione del paziente e della localizzazione del volume bersaglio, si è recentemente affermata come nuovo paradigma nella radioterapia, avendo migliorato radicalmente l’accuratezza nella somministrazione di dose a scopo terapeutico. Una promettente tecnica nel campo dell’IGRT è rappresentata dalla tomografia computerizzata a fascio conico (CBCT). La CBCT a kilovoltaggio, consente di fornire un’accurata mappatura tridimensionale dell’anatomia del paziente, in fase di pianificazione del trattamento e a ogni frazione del medisimo. Tuttavia, la dose da imaging attribuibile alle ripetute scansioni è diventata, negli ultimi anni, oggetto di una crescente preoccupazione nel contesto clinico. Lo scopo di questo lavoro è di valutare quantitativamente la dose addizionale somministrata da CBCT a kilovoltaggio, con riferimento a tre tipici protocolli di scansione per Varian OnBoard Imaging Systems (OBI, Palo Alto, California). A questo scopo sono state condotte simulazioni con codici Monte Carlo per il calcolo della dose, utilizzando il pacchetto gCTD, sviluppato sull’architettura della scheda grafica. L’utilizzo della GPU per sistemi server di calcolo ha permesso di raggiungere alte efficienze computazionali, accelerando le simulazioni Monte Carlo fino a raggiungere tempi di calcolo di ~1 min per un caso tipico. Inizialmente sono state condotte misure sperimentali di dose su un fantoccio d’acqua. I parametri necessari per la modellazione della sorgente di raggi X nel codice gCTD sono stati ottenuti attraverso un processo di validazione del codice al fine di accordare i valori di dose simulati in acqua con le misure nel fantoccio. Lo studio si concentra su cinquanta pazienti sottoposti a cicli di radioterapia a intensità modulata (IMRT). Venticinque pazienti con tumore al cervello sono utilizzati per studiare la dose nel protocollo standard-dose head e venticinque pazienti con tumore alla prostata sono selezionati per studiare la dose nei protocolli pelvis e pelvis spotlight. La dose media a ogni organo è calcolata. La dose media al 2% dei voxels con i valori più alti di dose è inoltre computata per ogni organo, al fine di caratterizzare l’omogeneità spaziale della distribuzione.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obiettivo: valutare la tossicità ed il controllo di malattia di un trattamento radioterapico ipofrazionato ad alte dosi con tecnica ad intensità modulata (IMRT) guidata dalle immagini (IGRT) in pazienti affetti da carcinoma prostatico a rischio intermedio, alto ed altissimo di recidiva. Materiali e metodi: tutti i pazienti candidati al trattamento sono stati stadiati e sottoposti al posizionamento di tre “markers” fiduciali intraprostatici necessari per l’IGRT. Mediante tecnica SIB – IMRT sono stati erogati alla prostata 67,50 Gy in 25 frazioni (EQD2 = 81 Gy), alle vescichette 56,25 Gy in 25 frazioni (EQD2 = 60,35 Gy) e ai linfonodi pelvici, qualora irradiati, 50 Gy in 25 frazioni. La tossicità gastrointestinale (GI) e genitourinaria (GU) è stata valutata mediante i CTCAE v. 4.03. Per individuare una possibile correlazione tra i potenziali fattori di rischio e la tossicità registrata è stato utilizzato il test esatto di Fisher e la sopravvivenza libera da malattia è stata calcolata mediante il metodo di Kaplan-Meier. Risultati: sono stati arruolati 71 pazienti. Il follow up medio è di 19 mesi (3-35 mesi). Nessun paziente ha dovuto interrompere il trattamento per la tossicità acuta. Il 14% dei pazienti (10 casi) ha presentato una tossicità acuta GI G ≥ 2 e il 15% (11 pazienti) ha riportato una tossicità acuta GU G2. Per quanto riguarda la tossicità tardiva GI e GU G ≥ 2, essa è stata documentata, rispettivamente, nel 14% dei casi (9 pazienti) e nell’11% (7 pazienti). Non è stata riscontrata nessuna tossicità, acuta o cronica, G4. Nessun fattore di rischio correlava con la tossicità. La sopravvivenza libera da malattia a 2 anni è del 94%. Conclusioni: il trattamento radioterapico ipofrazionato ad alte dosi con IMRT-IGRT appare essere sicuro ed efficace. Sono comunque necessari ulteriori studi per confermare questi dati ed i presupposti radiobiologici dell’ipofrazionamento del carcinoma prostatico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La presente ricerca consiste nel validare ed automatizzare metodiche di Adaptive Radiation Therapy (ART), che hanno come obiettivo la personalizzazione continua del piano di trattamento radioterapico in base alle variazioni anatomiche e dosimetriche del paziente. Tali variazioni (casuali e/o sistematiche) sono identificabili mediante l’utilizzo dell’imaging diagnostico. Il lavoro svolto presso la struttura di Fisica Medica dell’Azienda Ospedaliera Universitaria del Policlinico di Modena, si inserisce in un progetto del Ministero della Salute del bando Giovani Ricercatori dal titolo: “Dose warping methods for IGRT and ADAPTIVERT: dose accumulation based on organ motion and anatomical variations of the patients during radiation therapy treatments”. Questa metodica si sta affermando sempre più come nuova opportunità di trattamento e, per tale motivo, nasce l’esigenza di studiare e automatizzare processi realizzabili nella pratica clinica, con un utilizzo limitato di risorse. Si sono sviluppati script che hanno permesso l’automazione delle operazioni di Adaptive e deformazioni, raccogliendo i dati di 51 pazienti sottoposti a terapia mediante Tomotherapy. L’analisi delle co-registrazioni deformabili delle strutture e delle dosi distribuite, ha evidenziato criticità del software che hanno reso necessario lo sviluppo di sistemi di controllo dei risultati, per facilitare l’utente nella revisione quotidiana dei casi clinici. La letteratura riporta un numero piuttosto limitato di esperienze sulla validazione e utilizzo su larga scala di questi tools, per tale motivo, si è condotto un esame approfondito della qualità degli algoritmi elastici e la valutazione clinica in collaborazione di fisici medici e medici radioterapisti. Sono inoltre stati sviluppati principi di strutturazione di reti Bayesiane, che consentono di predirre la qualità delle deformazioni in diversi ambiti clinici (H&N, Prostata, Polmoni) e coordinare il lavoro quotidiano dei professionisti, identificando i pazienti, per i quali sono apprezzabili variazioni morfo-dosimetriche significative. Da notare come tale attività venga sviluppata automaticamente durante le ore notturne, sfruttando l’automation come strumento avanzato e indipendente dall’operatore. Infine, il forte sviluppo, negli ultimi anni della biomeccanica applicata al movimento degli organi (dimostrato dalla numerosa letteratura al riguardo), ha avuto come effetto lo sviluppo, la valutazione e l’introduzione di algoritmi di deformazione efficaci. In questa direzione, nel presente lavoro, si sono analizzate quantitivamente le variazioni e gli spostamenti delle parotidi, rispetto all’inizio del trattamento, gettando le basi per una proficua linea di ricerca in ambito radioterapico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was observed in the ‘80s that the radiation damage on biological systems strongly depends on processes occurring at the microscopic level, involving the elementary constituents of biological cells. Since then, lot of attention has been paid to study elementary processes of photo- and ion-chemistry of isolated organic molecule of biological interest. This work fits in this framework and aims to study the radiation damage mechanisms induced by different types of radiations on simple halogenated biomolecules used as radiosensitizers in radiotherapy. The research is focused on the photofragmentation of halogenated pyrimidine molecules (5Br-pyrimidine, 2Br-pyrimidine and 2Cl-pyrimidine) in the VUV range and on the 12C4+ ion-impact fragmentation of the 5Br-uracil and its homogeneous and hydrated clusters. Although halogen substituted pyrimidines have similar structure to the pyrimidine molecule, their photodissociation dynamics is quite different. These targets have been chosen with the purpose of investigating the effect of the specific halogen atom and site of halogenation on the fragmentation dynamics. Theoretical and experimental studies have highlighted that the site of halogenation and the type of halogen atom, lead either to the preferential breaking of the pyrimidinic ring or to the release of halogen/hydrogen radicals. The two processes can subsequently trigger different mechanisms of biological damage. To understand the effect of the environment on the fragmentation dynamic of the single molecule, the ion-induced fragmentation of homogenous and hydrated clusters of 5Br-uracil have been studied and compared to similar studies on the isolated molecule. The results show that the “protective effect” of the environment on the single molecule hold in the homogeneous clusters, but not in the hydrated clusters, where several hydrated fragments have been observed. This indicates that the presence of water molecules can inhibit some fragmentation channels and promote the keto-enol tautomerization, which is very important in the mutagenesis of the DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium fluoride (CaF2) is one of the key lens materials in deep-ultraviolet microlithography because of its transparency at 193 nm and its nearly perfect optical isotropy. Its physical and chemical properties make it applicable for lens fabrication. The key feature of CaF2 is its extreme laser stability. rnAfter exposing CaF2 to 193 nm laser irradiation at high fluences, a loss in optical performance is observed, which is related to radiation-induced defect structures in the material. The initial rapid damage process is well understood as the formation of radiation-induced point defects, however, after a long irradiation time of up to 2 months, permanent damage of the crystals is observed. Based on experimental results, these permanent radiation-induced defect structures are identified as metallic Ca colloids.rnThe properties of point defects in CaF2 and their stabilization in the crystal bulk are calculated with density functional theory (DFT). Because the stabilization of the point defects and the formation of metallic Ca colloids are diffusion-driven processes, the diffusion coefficients for the vacancy (F center) and the interstitial (H center) in CaF2 are determined with the nudged elastic band method. The optical properties of Ca colloids in CaF2 are obtained from Mie-theory, and their formation energy is determined.rnBased on experimental observations and the theoretical description of radiation-induced point defects and defect structures, a diffusion-based model for laser-induced material damage in CaF2 is proposed, which also includes a mechanism for annealing of laser damage. rn