921 resultados para Pattern recognition multivariate SIMCA
Resumo:
SBASE 8.0 is the eighth release of the SBASE library of protein domain sequences that contains 294 898 annotated structural, functional, ligand-binding and topogenic segments of proteins, cross-referenced to most major sequence databases and sequence pattern collections. The entries are clustered into over 2005 statistically validated domain groups (SBASE-A) and 595 non-validated groups (SBASE-B), provided with several WWW-based search and browsing facilities for online use. A domain-search facility was developed, based on non-parametric pattern recognition methods, including artificial neural networks. SBASE 8.0 is freely available by anonymous ‘ftp’ file transfer from ftp.icgeb.trieste.it. Automated searching of SBASE can be carried out with the WWW servers http://www.icgeb.trieste.it/sbase/ and http://sbase.abc.hu/sbase/.
Resumo:
The primate temporal cortex has been demonstrated to play an important role in visual memory and pattern recognition. It is of particular interest to investigate whether activity-dependent modification of synaptic efficacy, a presumptive mechanism for learning and memory, is present in this cortical region. Here we address this issue by examining the induction of synaptic plasticity in surgically resected human inferior and middle temporal cortex. The results show that synaptic strength in the human temporal cortex could undergo bidirectional modifications, depending on the pattern of conditioning stimulation. High frequency stimulation (100 or 40 Hz) in layer IV induced long-term potentiation (LTP) of both intracellular excitatory postsynaptic potentials and evoked field potentials in layers II/III. The LTP induced by 100 Hz tetanus was blocked by 50-100 microM DL-2-amino-5-phosphonovaleric acid, suggesting that N-methyl-D-aspartate receptors were responsible for its induction. Long-term depression (LTD) was elicited by prolonged low frequency stimulation (1 Hz, 15 min). It was reduced, but not completely blocked, by DL-2-amino-5-phosphonovaleric acid, implying that some other mechanisms in addition to N-methyl-DL-aspartate receptors were involved in LTD induction. LTD was input-specific, i.e., low frequency stimulation of one pathway produced LTD of synaptic transmission in that pathway only. Finally, the LTP and LTD could reverse each other, suggesting that they can act cooperatively to modify the functional state of cortical network. These results suggest that LTP and LTD are possible mechanisms for the visual memory and pattern recognition functions performed in the human temporal cortex.
Resumo:
Mammalian class A macrophage-specific scavenger receptors (SR-A) exhibit unusually broad binding specificity for a wide variety of polyanionic ligands. The properties of these receptors suggest that they may be involved in atherosclerosis and host defense. We have previously observed a similar receptor activity in Drosophila melanogaster embryonic macrophages and in the Drosophila macrophage-like Schneider L2 cell line. Expression cloning was used to isolate from L2 cells a cDNA that encodes a third class (class C) of scavenger receptor, Drosophila SR-CI (dSR-CI). dSR-CI expression was restricted to macrophages/hemocytes during embryonic development. When expressed in mammalian cells, dSR-CI exhibited high affinity and saturable binding of 125I-labeled acetylated low density lipoprotein and mediated its chloroquine-dependent, presumably lysosomal, degradation. Although the broad polyanionic ligand-binding specificity of dSR-CI was similar to that of SR-A, their predicted protein sequences are not similar. dSR-CI is a 609-residue type I integral membrane protein containing several well-known sequence motifs, including two complement control protein (CCP) domains and somatomedin B, MAM, and mucin-like domains. Macrophage scavenger receptors apparently mediate important, well-conserved functions and may be pattern-recognition receptors that arose early in the evolution of host-defense mechanisms. Genetic and physiologic analysis of dSR-CI function in Drosophila should provide further insights into the roles played by scavenger receptors in host defense and development.
Resumo:
This research proposes a methodology to improve computed individual prediction values provided by an existing regression model without having to change either its parameters or its architecture. In other words, we are interested in achieving more accurate results by adjusting the calculated regression prediction values, without modifying or rebuilding the original regression model. Our proposition is to adjust the regression prediction values using individual reliability estimates that indicate if a single regression prediction is likely to produce an error considered critical by the user of the regression. The proposed method was tested in three sets of experiments using three different types of data. The first set of experiments worked with synthetically produced data, the second with cross sectional data from the public data source UCI Machine Learning Repository and the third with time series data from ISO-NE (Independent System Operator in New England). The experiments with synthetic data were performed to verify how the method behaves in controlled situations. In this case, the outcomes of the experiments produced superior results with respect to predictions improvement for artificially produced cleaner datasets with progressive worsening with the addition of increased random elements. The experiments with real data extracted from UCI and ISO-NE were done to investigate the applicability of the methodology in the real world. The proposed method was able to improve regression prediction values by about 95% of the experiments with real data.
Resumo:
Os motores de indução trifásicos são os principais elementos de conversão de energia elétrica em mecânica motriz aplicados em vários setores produtivos. Identificar um defeito no motor em operação pode fornecer, antes que ele falhe, maior segurança no processo de tomada de decisão sobre a manutenção da máquina, redução de custos e aumento de disponibilidade. Nesta tese são apresentas inicialmente uma revisão bibliográfica e a metodologia geral para a reprodução dos defeitos nos motores e a aplicação da técnica de discretização dos sinais de correntes e tensões no domínio do tempo. É também desenvolvido um estudo comparativo entre métodos de classificação de padrões para a identificação de defeitos nestas máquinas, tais como: Naive Bayes, k-Nearest Neighbor, Support Vector Machine (Sequential Minimal Optimization), Rede Neural Artificial (Perceptron Multicamadas), Repeated Incremental Pruning to Produce Error Reduction e C4.5 Decision Tree. Também aplicou-se o conceito de Sistemas Multiagentes (SMA) para suportar a utilização de múltiplos métodos concorrentes de forma distribuída para reconhecimento de padrões de defeitos em rolamentos defeituosos, quebras nas barras da gaiola de esquilo do rotor e curto-circuito entre as bobinas do enrolamento do estator de motores de indução trifásicos. Complementarmente, algumas estratégias para a definição da severidade dos defeitos supracitados em motores foram exploradas, fazendo inclusive uma averiguação da influência do desequilíbrio de tensão na alimentação da máquina para a determinação destas anomalias. Os dados experimentais foram adquiridos por meio de uma bancada experimental em laboratório com motores de potência de 1 e 2 cv acionados diretamente na rede elétrica, operando em várias condições de desequilíbrio das tensões e variações da carga mecânica aplicada ao eixo do motor.
Resumo:
A Internet das Coisas é um novo paradigma de comunicação que estende o mundo virtual (Internet) para o mundo real com a interface e interação entre objetos. Ela possuirá um grande número de dispositivos heteregôneos interconectados, que deverá gerar um grande volume de dados. Um dos importantes desafios para seu desenvolvimento é se guardar e processar esse grande volume de dados em aceitáveis intervalos de tempo. Esta pesquisa endereça esse desafio, com a introdução de serviços de análise e reconhecimento de padrões nas camadas inferiores do modelo de para Internet das Coisas, que procura reduzir o processamento nas camadas superiores. Na pesquisa foram analisados os modelos de referência para Internet das Coisas e plataformas para desenvolvimento de aplicações nesse contexto. A nova arquitetura de implementada estende o LinkSmart Middeware pela introdução de um módulo para reconhecimento de padrões, implementa algoritmos para estimação de valores, detecção de outliers e descoberta de grupos nos dados brutos, oriundos de origens de dados. O novo módulo foi integrado à plataforma para Big Data Hadoop e usa as implementações algorítmicas do framework Mahout. Este trabalho destaca a importância da comunicação cross layer integrada à essa nova arquitetura. Nos experimentos desenvolvidos na pesquisa foram utilizadas bases de dados reais, provenientes do projeto Smart Santander, de modo a validar da nova arquitetura de IoT integrada aos serviços de análise e reconhecimento de padrões e a comunicação cross-layer.
Resumo:
A área da Tecnologia da Informação no Brasil sofre um problema latente com a falta de planejamento e atrasos constantes em projetos, determinando para os profissionais vinculados a ela um ambiente altamente desmotivador para a condução de seus trabalhos. Supõe-se que o que possa corroborar para tal problema seja a formação educacional deficitária dos indivíduos que atuam neste segmento, principalmente aqueles relacionados a cargos executivos e que estejam exercendo atividades de gestão. De acordo com teóricos como Edgard Morin (2004), em se tratando de educação fundamental, média ou superior os aspectos educacionais podem ser considerados deficitários justamente porque, ao segmentar o conhecimento, eles promovem uma alienação do indivíduo, eliminando sua capacidade criativa e reflexiva. Seria interessante, portanto, que ao avaliar a capacidade cognitiva de uma pessoa, a inteligência a ser mensurada não seja abordada através de um único espectro de conhecimento, mas através de muitos deles. A teoria das Inteligências Múltiplas, desenvolvida por Howard Gardner vem de encontro a essa necessidade, pois de acordo com o autor, a inteligência de um indivíduo deve ser mensurada através de uma gama de nove espectros: Linguística, Musical, Lógico-Matemática, Espacial, Corporal Cinestésica, Interpessoal, Intrapessoal, Naturalista e Existencial. Isto posto, este trabalho aborda uma metodologia computacional para classificação e descoberta de padrões em indivíduos, sejam esses alunos ou profissionais graduados, de uma determinada área. Além da metodologia, foi proposto um estudo de caso, considerando cursos superiores relacionados à área de Computação no Brasil.
Resumo:
Deformable Template models are first applied to track the inner wall of coronary arteries in intravascular ultrasound sequences, mainly in the assistance to angioplasty surgery. A circular template is used for initializing an elliptical deformable model to track wall deformation when inflating a balloon placed at the tip of the catheter. We define a new energy function for driving the behavior of the template and we test its robustness both in real and synthetic images. Finally we introduce a framework for learning and recognizing spatio-temporal geometric constraints based on Principal Component Analysis (eigenconstraints).
Resumo:
In this paper, we propose a novel method for the unsupervised clustering of graphs in the context of the constellation approach to object recognition. Such method is an EM central clustering algorithm which builds prototypical graphs on the basis of fast matching with graph transformations. Our experiments, both with random graphs and in realistic situations (visual localization), show that our prototypes improve the set median graphs and also the prototypes derived from our previous incremental method. We also discuss how the method scales with a growing number of images.
Resumo:
In this paper, we propose two Bayesian methods for detecting and grouping junctions. Our junction detection method evolves from the Kona approach, and it is based on a competitive greedy procedure inspired in the region competition method. Then, junction grouping is accomplished by finding connecting paths between pairs of junctions. Path searching is performed by applying a Bayesian A* algorithm that has been recently proposed. Both methods are efficient and robust, and they are tested with synthetic and real images.
Resumo:
Comunicación presentada en el 2nd International Workshop on Pattern Recognition in Information Systems, Alicante, April, 2002.
Resumo:
Behaviour analysis of construction safety systems is of fundamental importance to avoid accidental injuries. Traditionally, measurements of dynamic actions in Civil Engineering have been done through accelerometers, but high-speed cameras and image processing techniques can play an important role in this area. Here, we propose using morphological image filtering and Hough transform on high-speed video sequence as tools for dynamic measurements on that field. The presented method is applied to obtain the trajectory and acceleration of a cylindrical ballast falling from a building and trapped by a thread net. Results show that safety recommendations given in construction codes can be potentially dangerous for workers.
Resumo:
We have studied the effect of inactivated microbial stimuli (Candida albicans, Candida glabrata, Saccharomyces boulardii, and Staphylococcus aureus) on the in vitro differentiation of lineage negative (Lin−) hematopoietic progenitor mouse cells. Purified Lin− progenitors were co-cultured for 7 days with the stimuli, and cell differentiation was determined by flow cytometry analysis. All the stimuli assayed caused differentiation toward the myeloid lineage. S. boulardii and particularly C. glabrata were the stimuli that induced in a minor extent differentiation of Lin− cells, as the major population of differentiated cells corresponded to monocytes, whereas C. albicans and S. aureus induced differentiation beyond monocytes: to monocyte-derived dendritic cells and macrophages, respectively. Interestingly, signaling through TLR2 by its pure ligand Pam3CSK4 directed differentiation of Lin− cells almost exclusively to macrophages. These data support the notion that hematopoiesis can be modulated in response to microbial stimuli in a pathogen-dependent manner, being determined by the pathogen-associated molecular patterns and the pattern-recognition receptors involved, in order to generate the populations of mature cells required to deal with the pathogen.
Resumo:
The use of 3D data in mobile robotics applications provides valuable information about the robot’s environment but usually the huge amount of 3D information is unmanageable by the robot storage and computing capabilities. A data compression is necessary to store and manage this information but preserving as much information as possible. In this paper, we propose a 3D lossy compression system based on plane extraction which represent the points of each scene plane as a Delaunay triangulation and a set of points/area information. The compression system can be customized to achieve different data compression or accuracy ratios. It also supports a color segmentation stage to preserve original scene color information and provides a realistic scene reconstruction. The design of the method provides a fast scene reconstruction useful for further visualization or processing tasks.
Resumo:
Prototype Selection (PS) algorithms allow a faster Nearest Neighbor classification by keeping only the most profitable prototypes of the training set. In turn, these schemes typically lower the performance accuracy. In this work a new strategy for multi-label classifications tasks is proposed to solve this accuracy drop without the need of using all the training set. For that, given a new instance, the PS algorithm is used as a fast recommender system which retrieves the most likely classes. Then, the actual classification is performed only considering the prototypes from the initial training set belonging to the suggested classes. Results show that this strategy provides a large set of trade-off solutions which fills the gap between PS-based classification efficiency and conventional kNN accuracy. Furthermore, this scheme is not only able to, at best, reach the performance of conventional kNN with barely a third of distances computed, but it does also outperform the latter in noisy scenarios, proving to be a much more robust approach.