982 resultados para Nonlinear activation functions
Resumo:
Neuroimaging, functional image analysis, spatial model, cortical surface, spatially variable convolution
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2012
Resumo:
Reaction separation processes, reactive distillation, chromatographic reactor, equilibrium theory, nonlinear waves, process control, observer design, asymptoticaly exact input/output-linearization
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2007
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Magdeburg, Univ., Med. Fak., Habil.-Schr., 2012
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015
Resumo:
Otto-von-Guericke-Universität, Fakultät für Naturwissenschaften, Dissertation, 2016
Resumo:
L'anàlisi de la densitat urbana és utilitzada per examinar la distribució espacial de la població dins de les àrees urbanes, i és força útil per planificar els serveis públics. En aquest article, s'estudien setze formes funcionals clàssiques de la relació existent entre la densitat i la distancia en la regió metropolitana de Barcelona i els seus onze subcentres.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
We prove that any subanalytic locally Lipschitz function has the Sard property. Such functions are typically nonsmooth and their lack of regularity necessitates the choice of some generalized notion of gradient and of critical point. In our framework these notions are defined in terms of the Clarke and of the convex-stable subdifferentials. The main result of this note asserts that for any subanalytic locally Lipschitz function the set of its Clarke critical values is locally finite. The proof relies on Pawlucki's extension of the Puiseuxlemma. In the last section we give an example of a continuous subanalytic function which is not constant on a segment of "broadly critical" points, that is, points for which we can find arbitrarily short convex combinations of gradients at nearby points.
Resumo:
We review several results concerning the long time asymptotics of nonlinear diffusion models based on entropy and mass transport methods. Semidiscretization of these nonlinear diffusion models are proposed and their numerical properties analysed. We demonstrate the long time asymptotic results by numerical simulation and we discuss several open problems based on these numerical results. We show that for general nonlinear diffusion equations the long-time asymptotics can be characterized in terms of fixed points of certain maps which are contractions for the euclidean Wasserstein distance. In fact, we propose a new scaling for which we can prove that this family of fixed points converges to the Barenblatt solution for perturbations of homogeneous nonlinearities for values close to zero.