959 resultados para Newton Principia fondamenti meccanica classica
Resumo:
首先提出了一种新的基于卡尔曼滤波及牛顿预测的角加速度估计方法,在已知电机驱动系统位置信息的情况下,利用卡尔曼滤波实时估计系统的角加速度;同时采用牛顿预测方法解决估计算法的滞后问题,进一步提高了估计加速度的响应频带.以此为基础,本文进一步分析了利用估计加速度进行反馈控制以增强系统对外扰动的鲁棒性问题,提出了加速度反馈控制策略的设计准则并分析了稳定性.在一个直接驱动机器人关节上针对上述加速度估计及控制方法进行了实验研究:将估计加速度的实验结果与实测加速度(利用加速度计)的实验结果进行了比较分析,从而定量地揭示出估计加速度及其反馈控制在实际系统中的可行性及有效性.
Resumo:
基于角位置测量的角加速度实时估计问题是机电系统控制中一个非常重要的问题,在分析现有的线性回归平滑牛顿法和卡尔曼滤波法的基础上,提出了一种新的基于卡尔曼滤波和牛顿预测相结合的角加速度估计方法。该方法旨在利用牛顿预测进一步增强卡尔曼滤波的预测能力,减小由于滤波造成的相位滞后,提高估计加速度与实测加速度的一致性。为了验证新方法的有效性,以直接驱动机器人作为试验对象,采用将估计加速度的频率特性与实测加速度相比较的方法,分别对上述三种估计算法进行了试验比较研究,从而为利用估计加速度(取代测量加速度)实现加速度反馈控制提供了试验依据。
Resumo:
采用串联约束 /并联驱动的原理 ,通过加入约束机构 ,设计一种新型柔索驱动并联机器人。然而由于约束机构的引入 ,机器人的动力学分析变得更为复杂。在对机器人进行运动学分析的基础上 ,利用牛顿 欧拉法建立机器人动力学方程。仿真结果证明了该方法的有效性
Resumo:
给出了自主移动机器人定位的两种算法:解析算法和数值算法。解析法公式较以往的简洁。数值算法结合解析法和高斯-牛顿算法,不仅能避免因初值选取不合理而导致求解过程发散的问题,而且能提高运算精度和速度,通过对两种算法的计算机仿真,表明了解析算法具有运算速度快,而数值算法精度高的特点。其结果已用于自主移动机器人的研制中。
Resumo:
在图像成像、复制、扫描、传输、显示等过程中,不可避免地要造成图像的降质,如图像模糊、噪声干扰等。而在许多应用领域中,又需要清晰的、高质量的图像,因此,图像复原(如去噪、去模糊等)具有重要的意义。图像复原的目的是对降质图像进行处理,使其恢复成原始图像。它是图像处理、模式识别、机器视觉的基础,因而受到广泛的研究,并在天文学、遥感成像、医学影像等领域获得广泛的应用。图像复原的传统方法主要是进行图像滤波。由于图像的大部分信息存在于图像边缘部分,因此要求图像滤波既能去除图像的模糊和噪声,同时又能保持图像的细节。由于图像细节和噪声在频带上混叠,导致图像的平滑和边缘细节的保持成为一对矛盾。传统的滤波方法难以处理这类问题。近年来发展起来的偏微分方程图像处理技术,为解决图像复原中的这一矛盾提供了新途径。本论文共分五个部分。第一部分给出了图像复原的数学模型并讨论了其发展现状,综述了图像复原问题的规整化理论及方法,阐述了图像复原的基本过程和影响因素。第二部分研究了基于奇异值分解和能量最小原则的图像自适应降噪算法。基于有界变差的能量降噪模型的代数形式,提出了一种自适应图像降噪算法。该算法通过在矩阵范数意义下求能量最小,自适应确定去噪图像重构的奇异值个数。这一算法的特点是将能量最小原则和奇异值分解结合起来,在代数空间中建立了一种自适应的图像降噪算法。与基于压缩比和奇异值分解的降噪方法相比,该算法避免了图像压缩比函数及其拐点的计算。因此求解更加简单。第三部分研究了基于各向异性扩散的图像降噪和抖动消除算法。提出了两种算法,一、提出了一个由各向异性扩散方程定义的非线性图像滤波算子。与Perona,Malik提出的算子类似,该算子能够去除噪声,而且性能稳定,处理后的自然图像看上去清晰而且对比度也得到增强。对于图像抖动产生偏移,二、提出了一种基于各向异性非线性扩散以及抖动估计的抖动消除算法。这种各向异性非线性扩散的模型由两项组成,即扩散项以及强制项。基本思想就是对于边缘点以及光滑区域的点分别进行处理,利用Newton-Raphson算法计算最小化抖动误差,估计出抖动偏移量,从而得到抖动消除之后的图像。第四部分研究了基于四阶偏微分方程和基于高斯曲率的图像降噪算法。针对低阶的非线性偏微分方程进行图像去噪,如总变差、平均曲率流等去噪模型,会产生阶梯效应这一缺陷,即易得到分段常量结果的缺陷,提出了一种基于四阶偏微分方程的图像降噪算法,并给出了实验结果。提出了一种改进的基于高斯曲率和偏微分方程的图像降噪算法。该算法能够得到一个稳态的非平凡解,从而能够避免中止时间的选取。第五部分研究了基于C-V降噪模型的图像半盲复原算法。基于C-V降噪模型,提出了一种图像半盲的复原算法,即假定图像退化的模型已知,如高斯模糊,但是高斯核的方差未知,通过构造能量函数,将能量函数的极小问题转化为一个变分极小问题,由变分原理得到相应的欧拉-拉格朗日方程。这里设计的算法将未知数的个数由Leah Bar模型的三个减少为两个,最后估计出来高斯核的方差比Leah Bar 算法更加接近于真值。
Resumo:
月面巡视探测器(简称月球车)是一类在月面环境下执行巡视探测、科学考察及样品采样等任务的空间机器人,是我国月球探测二期工程中执行月面探测任务的关键载体。月球车行走能力事关我国探月二期工程的成败,开展在复杂地形下移动能力和地形通过能力的研究,是目前移动机器人研究中的前沿课题,是月面巡视任务的关键技术之一。本论文的选题具有重要的理论意义和应用价值。 月面环境的特殊性使月球车进行长距离、大范围的巡视任务面临一系列问题,包括地形对月球车移动性的影响、移动能力、地形通过能力、地形适应能力、安全性等。本文以月球车保持复杂地形下的高移动能力和地形通过能力为研究目标,以一种典型的被动柔顺式月球车为对象,从月球车与环境地形具有整体不可分离性的角度,将机器人与环境地形看成是相互作用的整体,深入研究了轮-地交互关系、软硬地形上的轮-地接触模型、环境地形给月球车带来的影响、软硬地形上的月球车建模、参数估计及运动控制等问题。根据对月球车移动性能影响程度之不同,本文从硬质地形与松软地形两个方面来考察环境地形的物理属性和轮-地交互关系。在硬质地形上,主要考虑地形平坦与不平坦对机器人移动的影响及其控制,六个驱动轮的速度协调控制,车轮打滑(前滑、侧滑、转向滑移)对机器人的建模、分析及控制的影响。在松软地形上,主要考虑轮-地接触关系,土壤特性对移动的影响及其控制。在大量阅读国内外文献并归纳总结的基础上,重点开展了如下几方面的研究: (1)在硬质不平坦地形下,引入轮-地几何接触角概念以反映地形不平坦时轮-地接触点在轮缘上位置的变化,去掉了通常采用的车轮纯滚动假设,考虑车轮滑移(包括侧滑、侧滑以及转向滑移),并结合月球车被动柔顺式移动机构的特点,提出了一种基于速度闭链的运动学建模方法,进行了基于整车模型的月球车速度协调控制研究。该运动学建模方法基于轮心处的速度投影建立整体运动学模型,物理概念清晰、便于实时运动学正反解计算。 (2)针对运动学模型中轮-地几何接触角难以直接测量的问题,提出了两种在线估计方法:误差计算法和卡尔曼滤波估计法。这两种方法均基于月球车整体运动学模型,只需要车轮内部传感器的测量信息,就能在线估计轮-地几何接触角。 (3)由于车轮滑移的影响,采用航位推算方法进行月球车状态估计以及里程计计算存在较大误差。本文提出了基于整体运动学模型的车体运动状态估计方法,并在月球车样机上对车体速度估计、航向角估计、里程计实时计算等方法进行了大量实验研究,验证了算法的有效性。 (4)针对松软地形上刚性轮与地形的交互建模问题,提出了一种基于Guass-Legendre数值积分和Newton-Raphson数值解法的地形参数实时估计方法。以月壤参数的变化范围为参考空间,通过数值仿真将不同地形参数对轮-地接触力的影响进行比较,进而选取对轮-地接触力有较大影响的地形参数进行在线估计,仿真和实验结果均表明估计算法是有效的。 (5)松软地形上常规的速度控制效果差,本文开展了月球车准静力学建模及牵引力控制算法研究,提出了两种牵引力控制算法。对月球车准静力学模型进行简化,提出了一种基于目标优化、考虑车体姿态变化的牵引力控制算法。利用上一章在线估计出的地形参数,对车轮滑移率进行最优估计,提出了一种基于最优滑移率的牵引力控制算法,并进行了仿真验证。
Resumo:
提出一种适用于深海应答器坐标测量的方法:垂线相交法。这种方法利用立体几何原理,获得应答器坐标。即测量母船在距应答器适中的位置沿两条相互垂直的航迹航行,分别找到两条航迹上与应答器斜距最小的点,过这两个点在水平面上做两条垂线,交点的经纬度坐标就是应答器的经纬度坐标。分析了影响测量误差的重要因素,并提出测量原则以满足精度要求,使测量系统具有很好的鲁棒性。为提高测距精度,采用射线声学理论中的RRA算法对声线进行修正。仿真实验证明了垂线相交法的有效性。该测量方法对深度没有要求,简化了繁琐的现场操作和水声测量系统,具有很高的工程实用价值。
Resumo:
本文给出一种运用约束最优化的变尺度法求解Schilling水下机械手运动学逆解的方法。这种方法不仅具有牛顿方法的快速性和理想的总体收敛性,通过迭代求取H阵,不仔在奇异性问题,运用惩罚函数法选取步长,保证了从任意点进行搜索,同时有效地处理了约束的存在。这种方法较其它优化算法和搜索法有明显的快速性,在PⅡ550微机上的求解实验证明此算法完全可以用在此机械手运动学的实时求解中。
Resumo:
本文给出一种基于优化算法的机械手运动学逆解的方法 ,这种优化方法基于信赖域方法 ,,具有超线性的收敛速率 .这种方法不仅具有牛顿方法的快速收敛性 ,又具有理想的总体收敛性 .这种方法较 CCD& BFS有明显的优点 ,可以在一般的 PC机上实现实时求解 .在 P II40 0上仅需不到 10 ms就可以求得最优解 .
Resumo:
针对Bzier曲线间最近距离计算问题,提出一种简捷、可靠的计算方法.该方法以Bernstein多项式算术运算为工具,建立Bzier曲线间最近距离的计算模型;然后充分利用Bzier曲面的凸包性质和de Casteljau分割算法进行求解.该方法几何意义明确,能有效地避免迭代初始值的选择和非线性方程组的求解,并可进一步推广应用于计算Bzier曲线/曲面间的最近距离.实验结果表明,该方法简捷、可靠且容易实现,与Newton-Raphson方法的融合可进一步提高该方法的运行速度.
Resumo:
数控加工作为现代制造中的标志性加工技术,在航空航天、运载工具、动力装备等领域的精密复杂型面加工中占据着主导地位。随着国内高速数控加工中心及高档数控机床等硬件设备的日趋成熟和普及,围绕高速数控加工的一些深层次问题便逐步显现出来,这突出表现在数控机床的高速加工特性与传统加工方法之间的矛盾。本文将主要围绕复杂型面高速数控加工中的两大关键技术:曲面造型技术与刀位规划策略,展开论述,着重解决其中的一些关键科学问题,以期为复杂型面的高速数控加工提供新的技术支持。 1. 以罐车曲面重构为例,详细论述了从不完整散乱数据到曲面精确重构的整个过程,着重解决了自由曲面重构理论在实际应用中遇到的一些问题。针对不完整散乱数据,提出一种散乱数据的有序化处理方法,同时给出了面向NURBS的数据自动参数化策略,用于构造罐车的系列截面轮廓线。然后以曲面蒙皮操作为基础实现罐车曲面的快速重构。最后利用参数曲面的离散表达,完成罐车容积的快速检定并借以验证罐车曲面重建的精确性。 2. 以Bézier曲线/曲面为基础,运用多元Bernstein多项式算术运算,将点到复杂曲线/曲面最近点的计算转化为Bernstein多项式方程的求解,进而基于Bernstein基函数的线性精度性质,给出一种新的最近点计算模型。然后通过de Casteljau快速分割算法和二叉/四叉树递归分解的搜索策略寻找最近点。该方法可以有效避免繁琐的迭代计算和对初始值的选择,并从计算效率入手,对其加以改进,成功实现了分割算法与Newton-Raphson方法的融合。再利用B样条曲线/曲面与Bézier曲线/曲面之间成熟的转换算法,将所提出的方法进一步推广到应用更为广泛的B样条曲线/曲面。 3. 通过对刀具轨迹有效性的分析,将刀具轨迹规划分为曲面上曲线族的选择和有效合理排布方式的设计两个方面,为刀具轨迹规划提供了新的设计思路。并以此为基础,对最优刀具轨迹的定义进行了重新阐述,指出今后刀具轨迹规划的研究必须综合考虑轨迹的几何、刀具的运动以及机床的动力学特性。 4. 针对数控加工中心高速加工特性,提出一种等参数螺旋轨迹生成方法。该方法以减少抬刀和路径转接为目的,并综合考虑刀具轨迹几何与运动力学性能,特别适合自由曲面的高速数控加工。同时,在刀具路径的链接、误差分析等方面,也提出了一些颇具特色的方法,从而避免了传统偏置轨迹繁琐的自交干涉检测,能够有效抑制刀具负载的波动,减小刀具的磨损。 5. 在正确重建网格模型拓扑关系的基础上,从离散微分几何学这一新的角度入手,给出了一种新的三角网格曲面微分几何特性分析方法,进而以参数曲面上曲线偏置方法为基础,结合三角网格曲面的拓扑结构和局部区域的精确拟合,建立了网格曲面上的曲线偏置模型,并将计算最近点的方法进一步推广用来计算曲面上的偏置点,从而避免了繁琐的迭代计算。以此为基础,对网格模型的边界轮廓进行等残留偏置,给出了网格曲面上的等残留刀具轨迹生成方法。可进一步利用螺旋线连接各条轨迹,生成更为光滑刀具路径。
Resumo:
The dynamic prediction of complex reservoir development is one of the important research contents of dynamic analysis of oil and gas development. With the increase development of time, the permeabilities and porosities of reservoirs and the permeability of block reservoir at its boundaries are dynamically changing. How to track the dynamic change of permeability and porosity and make certain the permeability of block reservoir at its boundary is an important practical problem. To study developing dynamic prediction of complex reservoir, the key problem of research of dynamic prediction of complex reservoir development is realizing inversion of permeability and porosity. To realize the inversion, first of all, the fast forward and inverse method of 3-dimension reservoir simulation must be studied. Although the inversion has been widely applied to exploration and logging, it has not been applied to3-dimension reservoir simulation. Therefore, the study of fast forward and inverse method of 3-dimension reservoir simulation is a cutting-edge problem, takes on important realistic signification and application value. In this dissertation, 2-dimension and 3-dimension fluid equations in porous media are discretized by finite difference, obtaining finite difference equations to meet the inner boundary conditions by Peaceman's equations, giving successive over relaxation iteration of 3-dimension fluid equations in porous media and the dimensional analysis. Several equation-solving methods are compared in common use, analyzing its convergence and convergence rate. The alternating direction implicit procedure of 2-dimension has been turned into successive over relaxation iteration of alternating direction implicit procedure of 3-dimension fluid equations in porous media, which possesses the virtues of fast computing speed, needing small memory of computer, good adaptability for heterogeneous media and fast convergence rate. The geological model of channel-sandy reservoir has been generated with the help of stochastic simulation technique, whose cross sections of channel-sandy reservoir are parabolic shapes. This method makes the hard data commendably meet, very suit for geological modeling of containing complex boundary surface reservoir. To verify reliability of the method, theoretical solution and numerical solution are compared by simplifying model of 3-dimension fluid equations in porous media, whose results show that the only difference of the two pressure curves is that the numerical solution is lower than theoretical at the wellbore in the same space. It proves that using finite difference to solve fluid equations in porous media is reliable. As numerical examples of 3-dimension heterogeneous reservoir of the single-well and multi-well, the pressure distributions have been computed respectively, which show the pressure distributions there are clearly difference as difference of the permeabilities is greater than one order of magnitude, otherwise there are no clearly difference. As application, the pressure distribution of the channel-sandy reservoir have been computed, which indicates that the space distribution of pressure strongly relies on the direction of permeability, and is sensitive for space distributions of permeability. In this dissertation, the Peaceman's equations have been modified into solving vertical well problem and horizontal well problem simultaneously. In porous media, a 3D layer reservoir in which contain vertical wells and horizontal wells has been calculated with iteration. For channel-sandy reservoir in which there are also vertical wells and horizontal wells, a 3D transient heterogeneous fluid equation has been discretized. As an example, the space distribution of pressure has been calculated with iteration. The results of examples are accord with the fact, which shows the modification of Peaceman's equation is correct. The problem has been solved in the space where there are vertical and horizontal wells. In the dissertation, the nonuniform grid permeability integration equation upscaling method, the nonuniform grid 2D flow rate upscaling method and the nonuniform grid 3D flow rate upscaling method have been studied respectively. In those methods, they enhance computing speed greatly, but the computing speed of 3D flow rate upscaling method is faster than that of 2D flow rate upscaling method, and the precision of 3D flow rate upscaling method is better than that of 2D flow rate upscaling method. The results also show that the solutions of upscaling method are very approximating to that of fine grid blocks. In this paper, 4 methods of fast adaptive nonuniform grid upscaling method of 3D fluid equations in porous media have been put forward, and applied to calculate 3D heterogeneous reservoir and channel-sandy reservoir, whose computing results show that the solutions of nonuniform adaptive upscaling method of 3D heterogeneous fluid equations in porous media are very approximating to that of fine grid blocks in the regions the permeability or porosity being abnormity and very approximating to that of coarsen grid blocks in the other region, however, the computing speed of adaptive upscaling method is 100 times faster than that of fine grid block method. The formula of sensitivity coefficients are derived from initial boundary value problems of fluid equations in porous media by Green's reciprocity principle. The sensitivity coefficients of wellbore pressure to permeability parameters are given by Peaceman's equation and calculated by means of numerical calculation method of 3D transient anisotropic fluid equation in porous media and verified by direct method. The computing results are in excellent agreement with those obtained by the direct method, which shows feasibility of the method. In the dissertation, the calculating examples are also given for 3D reservoir, channel-sandy reservoir and 3D multi-well reservoir, whose numerical results indicate: around the well hole, the value of the sensitivity coefficients of permeability is very large, the value of the sensitivity coefficients of porosity is very large too, but the sensitivity coefficients of porosity is much less than the sensitivity coefficients of permeability, so that the effect of the sensitivity coefficients of permeability for inversion of reservoir parameters is much greater than that of the sensitivity coefficients of porosity. Because computing the sensitivity coefficients needs to call twice the program of reservoir simulation in one iteration, realizing inversion of reservoir parameters must be sustained by the fast forward method. Using the sensitivity coefficients of permeability and porosity, conditioned on observed valley erosion thickness in wells (hard data), the inversion of the permeabilities and porosities in the homogeneous reservoir, homogeneous reservoir only along the certain direction and block reservoir are implemented by Gauss-Newton method or conjugate gradient method respectively. The results of our examples are very approximating to the real data of permeability and porosity, but the convergence rate of conjugate gradient method is much faster than that of Gauss-Newton method.
Resumo:
Melhoramento genetico de batata na Universidade Federal de Santa Maria; Melhoramento genetico de batata na Embrapa Clima Temperado; Melhoramento genetico de batata em Santa Catarina; Melhoramento Genetico da batata no Instituto Agronomico do Parana; Melhoramento genetico de batata no Instituto Agronomico de Campinas e a bataticultura em Sao Paulo; Melhoramento genetico da batata na Universidade Federal de Lavras; Melhoramento genetico de batata na Embrapa Hortalicas; Avaliacao de clones para resistencia a requeima; Avaliacao de clones e novas cultivares de batata producao de batata-semente na Embrapa Sementes Basicas, Gerencia Local de Canoinhas; Industrializacao de batata no Brasil; Apresentacao das instituicoes e temas tecnicos: comentarios e apartes.
Resumo:
This paper addresses the problem of nonlinear multivariate root finding. In an earlier paper we described a system called Newton which finds roots of systems of nonlinear equations using refinements of interval methods. The refinements are inspired by AI constraint propagation techniques. Newton is competative with continuation methods on most benchmarks and can handle a variety of cases that are infeasible for continuation methods. This paper presents three "cuts" which we believe capture the essential theoretical ideas behind the success of Newton. This paper describes the cuts in a concise and abstract manner which, we believe, makes the theoretical content of our work more apparent. Any implementation will need to adopt some heuristic control mechanism. Heuristic control of the cuts is only briefly discussed here.
Resumo:
The MOS transistor physical model as described in [3] is presented here as a network model. The goal is to obtain an accurate model, suitable for simulation, free from certain problems reported in the literature [13], and conceptually as simple as possible. To achieve this goal the original model had to be extended and modified. The paper presents the derivation of the network model from physical equations, including the corrections which are required for simulation and which compensate for simplifications introduced in the original physical model. Our intrinsic MOS model consists of three nonlinear voltage-controlled capacitors and a dependent current source. The charges of the capacitors and the current of the current source are functions of the voltages $V_{gs}$, $V_{bs}$, and $V_{ds}$. The complete model consists of the intrinsic model plus the parasitics. The apparent simplicity of the model is a result of hiding information in the characteristics of the nonlinear components. The resulted network model has been checked by simulation and analysis. It is shown that the network model is suitable for simulation: It is defined for any value of the voltages; the functions involved are continuous and satisfy Lipschitz conditions with no jumps at region boundaries; Derivatives have been computed symbolically and are available for use by the Newton-Raphson method. The model"s functions can be measured from the terminals. It is also shown that small channel effects can be included in the model. Higher frequency effects can be modeled by using a network consisting of several sections of the basic lumped model. Future plans include a detailed comparison of the network model with models such as SPICE level 3 and a comparison of the multi- section higher frequency model with experiments.