849 resultados para Morocco in art.
Resumo:
Si0.75Ge0.25/Si/Si0.5Ge0.5 trilayer asymmetric superlattices were prepared on Si (001) substrate by ultrahigh vacuum chemical vapor deposition at 500 degrees C. The nonlinear optical response caused by inherent asymmetric interfaces in this structure predicted by theories was verified by in-plane optical anisotropy in (001) plane measured via reflectance difference spectroscopy. The results show Si0.75Ge0.25/Si/Si0.5Ge0.5 asymmetric superlattice is optically biaxial and the two optical eigen axes in (001) plane are along the directions [110] and [-110], respectively. Reflectance difference response between the above two eigen axes can be influenced by the width of the trilayers and reaches as large as similar to 10(-4)-10(-3) in 15-period 2.7 nm-Si0.75Ge0.25/8 nm-Si/1.3 nm-Si0.5Ge0.5 superlattice when the normal incident light wavelength is in the range of 500-1100 nm, which is quite remarkable because the optical anisotropy does not exist in bulk Si.
Resumo:
The linear electro-optic (Pockels) effect of wurtzite gallium nitride (GaN) films and six-period GaN/AlxGa1-xN superlattices with different quantum structures were demonstrated by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The samples were prepared on (0001) sapphire substrate by low-temperature metalorganic chemical vapor deposition (MOCVD). The measured coefficients of the GaN/AlxGa1-xN superlattices are much larger than those of bulk material. Taking advantage of the strong field localization due to resonances, GaN/AlxGa1-xN SL can be proposed to engineer the nonlinear responses.
Resumo:
In this work, the guided modes of a photonic crystal polarization beam splitter (PC-PBS) are studied. We demonstrate that the transmission of a low-loss photonic crystal 120 degrees waveguide bend integrated with the PBS will be influenced if the PBS is multi-moded. We propose a single-moded PC-PBS structure by introducing deformed structures, and it shows twice the enhancement of the transmission. This device with remarkable improvement of performance is promising in the use of photonic crystal integrated circuits design.
Resumo:
Whispering gallery modes (WGMs) in microcavities possess ultra-high cavity Q factor. Such microcavity are easy to be fabricated, so WGMs have attracted much attention in the area of photonics and integrated photonic circuits. It is well known that the effect of total internal reflection restricts the size of this mirocavity. Such drawback goes against the integration of photon. However, the photonic crystal microcavities (PCMC) make a breakthrough recently. The WGMs in the PCMC are possible to gain both ultra-high Q and ultra-small mode volume. In this paper, the property of the mode in photonic crystal ring cavity is analyzed by FDTD and PWE. By modifying the airholes in the corners of the ring cavity, we can obtain the WGM. Also the Q factor of WGM in photonic crystal ring cavity is calculated. This favors the design of the photonic crystal microcavity components.
Resumo:
A high quality (Q) factor microring resonator in silicon-on-insulator rib waveguides was fabricated by electron beam lithography, followed by inductively coupled plasma etching. The waveguide dimensions were scaled down to submicron, for a low bending loss and compactness. Experimentally, the resonator has been realized with a quality factor as high as 21,200, as well as a large extinction ratio 12.5dB at telecommunication wavelength near 1550nm. From the measured results, propagation loss in the rib waveguide is determined as low as 6.900/cm. This high Q microring resonator is expected to lead to high speed optical modulators and bio-sensing devices.
Resumo:
We propose a novel optical fiber-to-waveguide coupler for integrated optical circuits. The proper materials and structural parameters of the coupler, which is based on a slot waveguide, are carefully analyzed using a full-vectorial three dimensional mode solver. Because the effective refractive index of the mode in a silicon-on-insulator-based slot waveguide can be extremely close to that of the fiber, a highly efficient fiber-to-waveguide coupling application can be realized. For a TE-like mode, the calculated minimum mismatch loss is about 1.8dB at 1550nm, and the mode conversion loss can be less than 0.5dB. The discussion of the present state-of-the-art is also involved. The proposed coupler can be used in chip-to-chip communication.
Resumo:
Hall effect, photoluminescence (PL), infrared absorption, deep level transient spectroscopy (DLTS), and Raman scattering have been used to study property and defects of ZnO single crystal grown by a chemical vapor transport method (CVT). As-grown ZnO is N type with free electron density Of 10(16)-10(17)cm(-3). It has a slight increase after 900 degrees C annealing in oxygen ambient. The DLTS measurement revealed four deep level defects with energy at 0.30eV, 0.50eV, 0.68eV and 0.90eV in the as-grown ZnO sample, respectively. After the high temperature annealing, only the 0.5eV defect survive and has a concentration increase. PL results of the as-grown and annealed ZnO indicate that the well-known green emission disappear after the annealing. The result suggests a correlation between the 0.68eV defect and the green PL peak. Results of P-doped ZnO were also compared with the undoped ZnO sample. The nature of the defects and their influence on the material property have been discussed.
Resumo:
The effects of plasma induced damage in different conditions of ICP and PECVD processes on LEDs were presented. For ICP mesa etch, in an effort to confirm the effects of dry etch damage on the optical properties of p-type GaN, a photoluminescence (PL) measurement was investigated with different rf chuck power. It was founded the PL intensity of the peak decreased with increasing DC bias and the intensity of sample etched at a higher DC bias of -400V is less by two orders of magnitude than that of the as-grown sample. Meanwhile, In the IN curve for the etched samples with different DC biases, the reverse leakage current of higher DC bias sample was obviously degraded than the lower one. In addition, plasma induced damage was also inevitable during the deposition of etch masks and surface passivation films by PECVD. The PL intensity of samples deposited with different powers sharply decreased when the power was excessive. The PL spectra of samples deposited under the fixed condition with the different processing time were measured, indicating the intensity of sample deposited with a lower power did not obviously vary after a long time deposition. A two-layer film was made in order to improve the compactness of sparse dielectric film deposited with a lower power.
Resumo:
This paper describes the ground target detection, classification and sensor fusion problems in distributed fiber seismic sensor network. Compared with conventional piezoelectric seismic sensor used in UGS, fiber optic sensor has advantages of high sensitivity and resistance to electromagnetic disturbance. We have developed a fiber seismic sensor network for target detection and classification. However, ground target recognition based on seismic sensor is a very challenging problem because of the non-stationary characteristic of seismic signal and complicated real life application environment. To solve these difficulties, we study robust feature extraction and classification algorithms adapted to fiber sensor network. An united multi-feature (UMF) method is used. An adaptive threshold detection algorithm is proposed to minimize the false alarm rate. Three kinds of targets comprise personnel, wheeled vehicle and tracked vehicle are concerned in the system. The classification simulation result shows that the SVM classifier outperforms the GMM and BPNN. The sensor fusion method based on D-S evidence theory is discussed to fully utilize information of fiber sensor array and improve overall performance of the system. A field experiment is organized to test the performance of fiber sensor network and gather real signal of targets for classification testing.
Resumo:
High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. the latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect,. different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.
Resumo:
Width varied quantum wells show a more flat and wide gain spectrume (about 115nm) than that of identical miltiple quantum well. A new fabricating method was demonstrated in this paper to realize two different Bragg grating in an selectable DFB laser based on this material grown identical chip using traditional holographic exposure. A wavelength by MOVPE was presented. Two stable distinct single longitudinal mode of 1510nm and 1530nm with SMSR of 45 dB were realized.
Resumo:
In AlGaInP/GaInP multi-quantum well (MQW) lasers, the electron leakage current is a much more serious problem than that in laser diodes with longer wavelength. To further improve the output performance, the leakage current should be analyzed. In this letter, the temperature dependence of electrical derivative characteristics in AlGaInP/GaInP multi-quantum well lasers was measured, and the potential barrier for electron leakage was obtained. With the help of secondary ion mass spectroscopy (SIMS) measurement, theoretical analysis of the potential barrier was presented and compared with the measurement result. The influence of p-cladding doping level and doping profile on the potential barrier was discussed, and this can be helpful in metalorganic chemical vapor deposition (MOCVD) growth.
Resumo:
The nonradiative recombination effect on the photoluminescence (PL) decay dynamics in GaInNAs/GaAs quantum wells is studied by photoluminescence and time-resolved photoluminescence under various excitation intensities and temperatures. It is found that the PL decay dynamics strongly depends on the excitation intensity. In particular, under the moderate excitation levels the PL decay curves exhibit unusual non-exponential behavior and show a convex shape. By introducing a new concept of the effective concentration of nonradiative recombination centers into a rate equation, the observed results are well simulated. In the cw PL measurement, a rapid PL quenching is observed even at very low temperature and is of the excitation power dependence. These results further demonstrate that the non-radiative recombination process plays a very important role on the optical properties of GaInNAs/GaAs quantum wells.
Resumo:
Sexton, J. (2008). From Art to Avant Garde? Television, Formalism and the Arts Documentary in 1960's Britain. In L. Mulvey and J. Sexton (Eds.), Experimental British Television (pp.89-105). Manchester: Manchester University Press. RAE2008